簡易檢索 / 詳目顯示

研究生: 余遠澤
Yu, Yuan-Tse
論文名稱: 網際網路策略式服務品質規範之分析與應用
Provisioning of Policy-based QoS over Internet
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 132
中文關鍵詞: 整合式服務服務品質資源預留協定差別式服務串流合併網路流量模型
外文關鍵詞: DiffServ., flow aggregation, traffic modeling, RSVP, QoS, IntServ
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   現今的Internet中,對於以多媒體串流技術為基礎的應用程式而言,服務品質的保證是長久以來一直被積極地想解決的問題,因此有兩個相關的技術被提出,分別是Integrated Service (IntServ) 與Differentiated Service (DiffServ)。IntServ被提出的主要的目的在於提供網路上端點間明確的資源預留,其之所以可以達成主要的原因為使用了個別網路串流的流量資訊,並以RSVP協定做為溝通的管道。相較於IntServ,DiffServ被提出的主要的目標則在於提供簡單、以等級分類且系統負荷低的服務品質保證。就IntServ而言,其被提出的目標主要被定位在提供個別多媒體串流的資源預留上,因此較不適合用於Internet的核心網路上;而相反的,DiffServ的資源預留技術則較適合用於Internet的核心網路上。但是,如果只用DiffServ的資源預留技術則會產生無法在網路的中繼設備上明確、精準及動態改變所預留的資源的現象發生,且無法精準的服務每一個網路的使用者或ISP。因此,整合IntServ與DffServ的作法相繼被提出與研究,且此種作法被視為可以解決點對點間的服務品質保證。

      然而在IntServ的網路環境中,雖然RSVP提出了使用三種資源預留的模式,但是卻沒有一個有系統的群播資源預留模型來教導使用者做資源預留的動作;而在DiffServ的網路環境中,雖然提出以COPS協定來傳遞路由器與DiffServ的頻寬代理人間的訊息,以確保可以使用的網路頻寬足以提供新進的使用者需求,但同樣的,卻沒有一個資源預留模型可提供我們設定在路由器上設定服務接近精準的頻寬與延遲上線等參數給任一多媒體串流,以提高網路的資源使用。

      為了解決上述的問題,在本論文中,我們分別設計了在IntServ網路環境中的資源預留模型架構與在DiffServ網路環境中針對分流的多媒體串流具有統計式分析模組的適應性差別式服務之群播閘道器。在IntServ當中,我們所提出的資源預留模型架構包含了傳統RSVP所提出的三種資源預留模式與一個我們在本論文中所提出的一個新的以使用者在網路中訊息流所建構的拓譜有關的資源預留模式。與傳統的三種RSVP資源預留模式相比較,我們所提出的CP模式不論在理論上的推演,或以網路模擬的數值驗證上,均可有較好的成效。而在DiffSer網路中,我們所提出的ADMG適應性差別式服務之群播閘道器,更可以依照所設計的串流統計式分析模組的運行下,達到較好的頻寬利用百分比;同時更可以動態的根據網路目前的壅塞狀況,調整網路上串流的傳送速率,以達到更好的使用者端影音的品質呈現,且我們的系統分析與實際的系統測試數據亦顯示了這方面的表現。

     Two popular approaches for providing Quality of Service (QoS) over Internet are Integrated Services (IntServ) and Differentiated Services (DiffServ). IntServ intends for providing explicit end-to-end resource reservation based on per flow information using the Resource Reservation Protocol (RSVP). DiffServ aims for a relatively simple, per class based, and lightweight QoS mechanism that does not depend entirely on explicit per-flow resource reservation in contrast to IntServ. IntServ allows per micro-flow resource allocation, but it does not scale to the core Internet. Resource reservation in the core is more likely to be deployed using the DiffServ architecture. Oppositely, if only adopting DiffServ to guarantee QoS, resources cannot be allocated explicitly and dynamically at each intermediate node and satisfy the need of users or ISPs. Therefore, IntServ/DiffServ integration has been accepted as a solid solution to provide end-to-end QoS.

     In the IntServ domain, although RSVP intends to employ three different reservation styles to provide resource reservation, no systematic multicast-reservation-modeling framework has ever been given so far for guiding us how to utilize these reservation styles to formulate requests based on the communication paradigm. In the DiffServ domain, although the COPS (Common Open Policy Service) protocol is used for exchanging messages between routers and Bandwidth Brokers to make sure the current available bandwidth can support the new request, there is still no advanced resource reservation model for guiding us how to setup the approximately bandwidth and delay bound for each service queue to service each aggregated flows.

     For the above concerns, in this dissertation, we have developed (1) a set of reservation modeling frameworks with respect to the existing three RSVP reservation styles and a new CP reservation style in the IntServ domain and (2) a DiffServ-based multicast media gateway, called Adaptive Differentiated Service Multicast Gateway (ADMG), using the statistical layered aggregation model in the DiffServ domain respectively. Comparing with the exiting three RSVP reservation styles, the proposed CP reservation style is theoretically proven to be more efficient in resource reservation over the IntServ network, while incurring limited information and processing overheads. The advantage of CP is further confirmed by simulation results of two applications, i.e., a distant learning and B2B bargain scenarios. The developed ADMG system can (1) improve the bandwidth utilization by reserving bandwidth based on the proposed aggregation of layered media and (2) improve the presentation quality of the received layered media by dynamically adjusting the sending rate according to the networking situation over the DiffServ domain. The results of the performance analysis indicate that the ADMG system can detect the congestion of the network and react immediately by implementing appropriate procedures over the DiffServ network.

    Contents Chapter 1 Introduction ............................................................................................. 10 1.1. Motivation ............................................................................................................ 14 1.2. The Approaches and Main Contributions............................................................. 17 1.3. Organization of the Dissertation........................................................................... 20 Chapter 2 Preliminary and related works............................................................ 21 2.1. QoS Signaling Process in RSVP .......................................................................... 21 2.2. Service Classification over Differentiated Service Network (DiffServ) .............. 22 2.3. Components of a Differentiated Service Node..................................................... 24 2.4. DiffServ Routers Implementation in Linux.......................................................... 27 2.5. Media Layering .................................................................................................... 32 Chapter 3 IntServ - Multicast-Reservation-Modeling Framework................... 36 3.1. Communication Paradigm (CP) Graph Model ..................................................... 37 3.2. Basics of IP Multicast and RSVP ......................................................................... 42 3.3. Reservation Request Formulation ........................................................................ 49 Chapter 4 IntServ - Performance Evaluation of Multicast-Reservation-Modeling Framework ........................................................ 68 4.1. Distant-Learning Application ............................................................................... 68 4.2. B2B-Bargain Application ..................................................................................... 72 4.3. Discussion............................................................................................................. 76 Chapter 5 DiffServ - Guaranteeing Stable Quality-of-Service for Delivering Compressed Video based on the Aggregation of Layered Media.......................... 78 5.1. Guaranteed QoS-based Media Aggregation......................................................... 79 5.2. Deterministic Schedulability Test ........................................................................ 81 5.3. Statistical Schedulability Test .............................................................................. 83 Chapter 6 DiffServ - ADMG System Architecture .............................................. 85 6.1. Abstract Architecture of the Adaptive DiffServ Network.................................... 85 6.2. Adaptive Differentiated Service Multicast Gateway............................................ 87 Chapter 7 DiffServ – Performance Evaluation of ADMG System..................... 98 7.1. Experimental Environment................................................................................... 98 7.2. Experimental Scenarios ...................................................................................... 100 7.3. Analysis of Adoption of the Aggregation of Layered Media Theorem ............. 102 7.4. Analysis in the Real DiffServ Environment....................................................... 110 Chapter 8 Conclusion........................................................................................... 123 Bibliography............................................................................................................. 127

    [1] R. Aravind, MR Civanlar, and AR Reibman, “Packet loss resilience of MPEG-2
    scalable video coding algorithms,” IEEE Transactions on Circuits and Systems
    for Video Technology 6 (5) (Oct. 1996), 426--435.
    [2] W. Almesberger, "Linux Network Traffic Control - Implementation Overview",
    Technical Report, EPFL, 1998.
    [3] W. Almesberger, J. H. Salim, and A. Kuznetsov, "Differentiated Services on
    Linux", Proceedings of GLOBECOM '99, VOL. 1b, pp. 831-836, 1999.
    [4] J. Boyce and R. Gaglianello, "Packet Loss Effects on MPEG Video Sent over
    the Public Internet", Proceedings of the 6th ACM International Conference on
    Multimedia, pp. 181-190, Sep. 1998.
    [5] R. Boorstyn, A. Burchard, J. Liebeheer, and C. Oottamakorn, "Effective
    Envelopes: Statistical Bounds on Multiplexed Traffic in Packet Networks",
    Proceedings of IEEE INFOCOM 2000,VOL. 3, pp. 1223 -1232, March 2000.
    [6] R. Braden, D. Clark and S. Shenker,“Integrated Services in the Internet
    Architecture: an Overview”, RFC 1633, June 1994.
    [7] R. Bless and K. Wehrle, "Evaluation of Differentiated Services Using an
    Implementation under Linux", Proceedings of the 7th IFIP International
    Workshop on Quality of Service (IWQOS'99), pp. 97-106, 1999.
    [8] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205: Resource
    ReSerVation Protocol (RSVP) --- version 1 functional specification, September
    1997.
    [9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, “An
    Architecture for Differentiated Services”, RFC 2475, December 1998.
    [10] T. Braun, M. Scheidegger, H. Joachim, and K. Jonas, "A Linux Implementation
    of a Differentiated Services Router", Proceedings of Networks and Services for
    Information Society (INTERWORKING'2000), pp. 302-315, 2000.
    [11] Yoram Bernet, “The Complementary Role of RSVP and Differentiated Services
    128
    in the Full-service QoS Network”, IEEE Communication Magazine,
    pp.154~162. Feb. 2000.
    [12] Y. Bernet, R. Yavatkar, P. Ford, F. Baker, L. Zhang, M. Speer, R. Braden, B.
    Davie, J. Wroclawski, E. Felstaine, “A Framework For Integrated Services
    Operation Over Diffserv Networks”, Internet Draft, May, 2000.
    [13] Chris Metz, “ RSVP: General-Purpose Signaling for IP”, IEEE Internet
    Computing, pp. 95~99, May-June 1999.
    [14] S. Cheung, M.H. Ammar and X. Li, “On the Use of Destination Set Grouping to
    Improve Fairness in Multicast Video Distribution”, Proc. of INFOCOM’96,
    pp.553~560.
    [15] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, “Introduction to algorithms,”
    McGraw-Hill Edition, 1985, Chapter 37, pp.966~968.
    [16] C. Dovrolis, and P. Ramanathann, "Proportional Differentiated Services, Part II:
    Loss Rate Differentiation and Packet Dropping", Proceedings of International
    Workshop on Quality of Service, pp. 52 -61, 2000.
    [17] D. Durham, Ed., J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, "The
    COPS (Common Open Policy Service) Protocol", RFC 2748, IETF, Jan. 2000.
    [18] S. Damaskos and H.F. Salama, “Reservation Mechanisms for Efficient Resource
    Management in Internetworks,” 1996 IEEE Proceedings of Multimedia’96,
    pp.557-561.
    [19] A. Elwalid and D. Mitra, "Design of Generalized Processor Sharing Schedulers
    which Statistically Multiplex Heterogeneous QoS Classes", Proceedings of
    IEEE INFOCOM'99, pp. 1220-1230, March 1999.
    [20] A. Elwalid, D. Mitra, and R. Wentworth, "A New Approach for Allocating
    Buffers and Bandwidth to Heterogeneous, Regulated Traffic in an ATM Node",
    IEEE Journal on Selected Area in Communications, VOL. 13, NO. 6, pp.
    1115-1127, August 1995.
    [21] H. Einsiedler, R. L. Aguiar, J. Jahnert, K. Jonas, M. Liebsch, R. Schmitz, J.
    Gozdecki, P. Pacyna, Z. Papir, J. I. Moreno, and I. Soto, "The MOBYDICK
    Project: a Mobile Heterogeneous All-IP Architecture", Proceedings of Internet
    Conference on Advanced Technologies, Applications, and Market Strategies for
    3G, pp. 164-171, 2001.
    129
    [22] D. Ferrari and D. Verma, "A Scheme for Real-Time Channel Establishment in
    Wide-Area Networks", IEEE Journal on Selected Areas in Communications,
    VOL.8, NO.3, pp. 368-379, April 1990.
    [23] D. Gall, “MPEG: A Video Compression Standard for Multimedia Applications,”
    Communications of the ACM, vol.34, no.4, pp.46-58, April 1991.
    [24] J. Gallardo, D. Makrakis, and M. Angulo, "Dynamic Resource Management
    Considering the Real Behavior of Aggregate Traffic", IEEE Transactions on
    Multimedia, VOL. 3, NO. 2, pp. 177-185, June 2001.
    [25] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. "Assured Forwarding PHB
    Group" RFC 2597, IETF, June 1999.
    [26] E. Knightly, "Resource Allocation for Multimedia Traffic Flows Using
    Rate-Variance Envelopes", ACM Multimedia Systems, VOL. 7, NO. 6, pp.
    477-485, 1999.
    [27] E. Knightly, "H-BIND: A New Approach to Providing Statistical Performance
    Guarantees to VBR Traffic", Proceedings of IEEE INFOCOM'96, pp.
    1091-1099, March 1996.
    [28] E. Knightly, "Enforceable Quality of Service Guarantees for Bursty Traffic
    Streams", Proceedings of IEEE INFOCOM'98, VOL. 2, pp. 635-642, March
    1998.
    [29] E. Knightly and H. Zhang, "D-BIND: an Accurate Traffic Model for Providing
    QoS Guarantees to VBR Traffic", IEEE/ACM Transactions on Networking,
    VOL. 5, NO. 2, pp. 219-231, April 1997.
    [30] E. W. Knightly and H. Zhang, "Traffic Characterization and Switch Utilization
    Using Deterministic Bounding Interval Dependent Traffic Models",
    Proceedings of IEEE INFOCOM'95, pp. 1137-1145, April 1995.
    [31] E. Knightly, D. Wrege, H.Zhang, and J. Liebeherr, "Deterministic Delay Bounds
    for VBR Video in Packet-Switching Network: Fundamental Limits and
    Practical Tradeoffs", IEEE/AC Transactions on Networking, VOL. 4, NO. 3, pp.
    352-362, June 1996.
    [32] M. Krunz and A. Makowski, "Modeling Video Traffic using M/G/∞ Input
    Processes: a Compromise between Markovian and LRD Models", IEEE Journal
    on Selected Areas in Communications, VOL. 16, NO. 5, pp. 733-748, June
    130
    1998.
    [33] M. Krunz and S. Tripathi, "Impact of Video Scheduling on Bandwidth
    Allocation for Multiplexed MPEG streams", ACM Multimedia Systems , VOL.
    5, NO. 6, pp. 347-357, 1997.
    [34] M. Kawada, K. Nakauchi, H. Morikawa, and T. Aoyama, "Multiple Streams
    Controller for Layered Multicast," Proceedings of IEEE International
    Conference on Communications, VOL. 1, pp. 65-68, 1999.
    [35] M. Khademi and F. J. Paoloni, "Layered Video Communications in an ATM
    Environment", Proceedings of Singapore ICCS'94, VOL. 1, pp. 65-69, 1994.
    [36] S. Kweon and K. Shin, "Transport of MPEG Video with Statistical Loss and
    Delay Guarantees in ATM Networks Using a Histogram-Based Source Model",
    Proceedings of the 20th IEEE Real-Time Systems Symposium, pp. 179-189,
    1999.
    [37] H. Lee, H. Kwon, and Y. Nemoto, "Guaranteeing Multiple QoSs in
    Differentiated Services Internet", Proceedings of International Conference on
    Parallel and Distributed System (ICPADS), pp. 233-238, 2000.
    [38] X. Li, S. Paul and M. Ammar, "Layered Video Multicast with Retransmissions
    (LVMR): Evaluation of Hierarchical Rate Control," Proceedings of IEEE
    INFOCOM98, VOL.3, pp.1062-1072, 1998.
    [39] A. Lombardo, G. Schembra, and G. Morabito, "Traffic Specification for the
    Transmission of Stored MPEG Video on the Internet", IEEE Transactions on
    Multimedia, VOL. 3, NO. 1, pp. 5-17, March 2001.
    [40] J. Leibeherr, S. Patek, and E. Yilmaz, "Tradeoffs in Designing Networks with
    End-to-End Statistical QoS Guarantees", Proceedings of the 8th IEEE/IFIP
    International Workshop on Quality of Service (IWQoS '2000), pp. 221-230,
    June 2000.
    [41] J. Leibeherr, D. Wrege, and D. Ferrari, "Exact Admission Control for Networks
    with Bounded Delay Services", IEEE/ACM Transactions on Networking, VOL.
    4, NO. 6, pp. 885-901, December 1996.
    [42] X. Li and M.H. Ammar, “Bandwidth Control for Replicated-Stream Multicast
    Video Distribution”, Proc. HPDC’96.
    [43] I. Nagayoshi, T. Hanamura, H. Kasai, H. Tominaga, “Scalable Video
    131
    Transmission by Separating and Merging of MPEG-2 Bitstream,” 2001 IEEE
    International Conference on Multimedia and Expo August 22 - 25, 2001
    [44] A. Papoulis, "Probability, Random Variables, and Stochastic Processes", 3rd
    Edition, McGraw Hill, 1991.
    [45] M. Podolsky, M. Vetterli, and S. McCanne, "Limited Retransmission of
    Real-Time Layered Multimedia", Prodeedings of the 2nd IEEE Workshop on
    Multimedia Signal Processing, pp. 591-596, 1998.
    [46] F. Ruijin, L.-B. Sung and A. Gupta, “Scalable Layered MPEG-2 Video Multicast
    Architecture,” IEEE Transactions on Consumer Electronics, Vol. 47, No. 1,
    February 2001.
    [47] R. M. Santos, J. Santos, and J Orozco, "Scheduling Heterogeneous Multimedia
    Servers: Different QoS for Hard, Soft and Non Real-Time Clients", Proceeding
    of Euromicro RTS 2000, pp. 247-253, 2000.
    [48] Jitae Shin, JongWon Kim, and C.-C. Jay Kuo, "Content-Based Packet Video
    Forwarding Mechanism in Differentiated Service Networks", Proceedings of
    International Packet Video Workshop, May 2000.
    [49] Jitae Shin, JongWon Kim, and C.-C. Jay Kuo, "Quality of Service Mapping
    Mechanism for Packet Video in Differentiated Services Network", IEEE
    Transactions on Multimedia, VOL. 3, NO. 2, pp. 219-231, June 2001.
    [50] D. Sisalem and F. Emanuel, "QoS Control Using Adaptive Layered Data
    Transmission", Prodeedings of IEEE Internation Conference on Multimedia
    Computing and System, pp. 4-12, 1998.
    [51] Ling Su, Rong Zheng, and Jennifer C. Hou "An Active Queue Management
    Scheme for Internet Congestion Control and Its Application to Differentiated
    Services", Proceedings of ICCCN '2000, 2000.
    [52] S. Tong, Y. Yu, and C. Huang, "Guaranteeing Quality-of-Service for Delivery of
    Compressed Videos based on GOP-Aware EFFECTIVE ENVELOPEs",
    Proceedings of IEEE International Conference on Multimedia, May 2002.
    [53] P. Trimintzios, I. Andrikopoulos, G. Pavlou, C.F. Cavalcanti, D. Goderis, Y.
    T'Joens, P. Georgatsos, L. Georgiadis, D. Griffin, C. Jacquenet, R. Egan, and G.
    Memenios, "An Architectural Framework for Providing QoS in IP
    Differentiated Services Networks", Proceedings of the 7th IFIP/IEEE
    132
    International Symposium on Integrated Network Management (IM 2001), pp.
    17-34, May 2001.
    [54] D. Waitzman, C. Partridge and S. Deering, “Distance Vector Multicast Routing
    Protocol”, Interenet RFC 1075, November 1988.
    [55] D. Wrege, E. knightly, H. Zhang, and J. Liebeherr, "Deterministic Delay Bounds
    for VBR video in Packet-Switching Networks: Fundamental Limits and
    Practical Tradeoffs", IEEE/ACM Transactions on Networking, VOL. 4, NO. 3,
    pp. 352-362, June 1996.
    [56] P. White, “RSVP and Integrated Services in the Internet - A Tutorial”, IEEE
    Communications Magazine, Vol 35, Iss 5, pp 100-106, May1997.
    [57] T. Wong, R. Katz and S. McCanne, “An Evaluation of Preference Clustering in
    Large-Scale Multicast Applications”, IEEE INFOCOM 2000, pp. 451~460.
    [58] X. Xioa and L.M. Ni, “Internet QoS: A Big Picture”, IEEE Network, pp.8~18,
    March/April 1999.
    [59] L. Xue, H. Mostafa, P. Sanjoy, “Video Multicast over the Internet”, IEEE
    Network, pp.46~60, March/April 1999.
    [60] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala, “RSVP: a new
    Resource ReSerVation Protocol”, IEEE Network, September 1993.

    下載圖示 校內:立即公開
    校外:2005-07-06公開
    QR CODE