簡易檢索 / 詳目顯示

研究生: 林士隆
Lin, Shih-Lung
論文名稱: 雷射震波蒸發生成金屬微粒之研究
Study of the metal particle solidification in Laser vaporization with shock wave effects
指導教授: 林震銘
Lin, Jehn-ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 114
中文關鍵詞: 金屬微粒雷射蒸發
外文關鍵詞: metal particle, laser vaporization
相關次數: 點閱:86下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究目的是以雷射震波蒸發法生成金屬微粒,針對震波流場以及金屬微粒的熱傳與運動現象以數值分析及實驗方法進行研究。
    數值方面,首先考慮噴嘴以及噴嘴出口區域的速度與壓力變化,運用流場方程式、氣動方程式以及相關數值方法,以數值分析軟體FLUENT計算分析。在參數分析方面,計算不同噴嘴入口壓力值對於流場的速度與壓力變化的影響。其次運動中的金屬微粒溫度、速度的變化是以自行建立的數學模型進行計算,計算過程中運用了熱傳方程式、動量方程式,並分析可壓縮性流對於金屬微粒溫度與速度的影響,此數值模型可以預測 1μm-150μm的鐵(碳)金屬微粒之凝固行為。
    在實驗方面使用不同噴嘴入口壓力的條件下以陰影法觀測流場產生的震波、以Nd-YAG雷射生成金屬微粒以並使用光電二極體量測金屬微粒的飛行速度,經由實驗所獲得的結果再與數值結果進行比對。本文的研究結果可以作為雷射震波蒸發法生成金屬奈米粉末的分析基礎。

    The object of this thesis is to study the solidification phenomena of carbon steel particles in laser vaporization with shock wave effects. The problem was solved by numerical simulation and experimental observation.

    The aspects of the numerical analysis include the particle velocity, flow pressure and particle temperature in the flow field. Using the computational fluid dynamics (CFD) software, FLUENT, the compressible flow problem with turbulence was solved. With the mathematical models formulating the solidification processes of the particle-gas interactions in flight, the heat transfer problem was solved. Furthermore, the effects of compressible flow on metal particle temperature and velocity were also considered. The proposed model can be used to predict the carbon steel particles in the size range of 1-150μm.

    The effects of process parameters on the solidification of carbon-steel particle were investigated, the experiments including the flow visualization by shadowgraph method, the generation of metal particle with Nd-YAG laser and the measurement of particle velocity were proposed to verify the numerical results. This research is a fundamental study for the future research on the generation of nanometer particle with pulsed laser radiation and shock wave interference.

    中文摘要……………………………………………………………Ⅰ 英文摘要……………………………………………………………Ⅱ 誌謝…………………………………………………………………Ⅲ 目錄…………………………………………………………………Ⅳ 表目錄………………………………………………………………Ⅷ 圖目錄………………………………………………………………ⅠⅩ 符號說明……………………………………………………………ⅩⅠ 第一章 緒論…………………………………………………………1 1-1 研究目的……………………………………………………… 1 1-2 文獻回顧………………………………………………………… 3 1-2.1 奈米粉末生成技術……………………………………… 3 1-2.2脈衝雷射熔損(Pulsed Laser Ablation)……………… 4 1-2.3噴覆成形製程…………………………………………… 7 1-3 本文架構………………………………………………………… 9 第二章 數值分析理論……………………………………………… 10 2-1流場方程式……………………………………………………… 10 2-1.1基本假設………………………………………………… 11 2-1.2擾流方程式……………………………………………… 11 2-1.3氣動方程式……………………………………………… 13 2-1.4金屬微粒軌跡運動方程式……………………………… 14 2-2 Fluent數值計算軟體證……………………………………… 17 2.2.1數值方法………………………………………………… 17 2-2.2 FLUENT數值驗證……………………………………… 19 2-3金屬微粒熱傳及運動方程式…………………………………… 21 2-3.1物理模型及假設………………………………………… 21 2-3.2氣流速度方程式………………………………………… 23 2-3.3運動方程式…………………………………………… 23 2-3.4熱傳方程式…………………………………………… 24 2-3.5可壓縮流體熱傳性質分析…………………………… 29 第三章 數值分析結果…………………………………………… 32 3-1流場分析……………………………………………………… 32 3-1.1幾何範圍及物理條件設定……………………………… 32 3-1.2格點建立及測試………………………………………… 34 3-1.3參數分析………………………………………………… 38 3-1.4結論……………………………………………………… 44 3-2 碳鋼微粒溫度歷程與運動分析………………………………… 45 3-2.1物理條件及初始條件設定……………………………… 45 3-2.2震波流場效應…………………………………………… 47 3-2.3參數討論………………………………………………… 49 3-2.3.1不可壓縮流分析……………………………… 49 3-2.3.2可壓縮流分析………………………………… 54 3-2.4結論…………………………………………………… 59 3-3 結果與討論…………………………………………………… 63 第四章 實驗……………………………………………………… 66 4-1流場觀測實驗………………………………………………… 66 4-1.1實驗方法………………………………………………… 66 4-1.2實驗結果………………………………………………… 68 4-1.3數值與實驗結果比較…………………………………… 69 4-2碳鋼微粒生成實驗…………………………………………… 71 4-2.1實驗配置………………………………………………… 71 4-2.2實驗步驟………………………………………………… 72 4-2.3實驗結果………………………………………………… 73 4-3碳鋼微粒速度量測…………………………………………… 83 4-3.1實驗配置………………………………………………… 83 4-3.2實驗步驟與條件………………………………………… 84 4-3.3測量結果與數值比較…………………………………… 85 4-4結果及討論…………………………………………………… 89 第五章 綜合討論與建議………………………………………… 91 5-1綜合討論……………………………………………………… 91 5-2相關建議及未來發展………………………………………… 95 參考文獻………………………………………………………… 96 附錄A……………………………………………………………… 99 附錄B……………………………………………………………… 101 附錄C……………………………………………………………… 109 附錄D……………………………………………………………… 111 附錄E……………………………………………………………… 112 自述 ……………………………………………………………… 114

    [1]Amils X., Nogues J., Surinach S., and Baro M. D., ”Magnetic Investigations on The Reordering of A Ball Milled Fe-40Al at% Alloy”, Mater. Sci. Ent. A, Vol.92-98, pp92-98, 1999.
    [2]Draper C. W., “Ultra-Fine Metal Particle Formation via Pulsed Laser Breakdown of Carbonyl Vapors”, Metallurgical Transactions A, Vol. 11A, pp.349-351, 1980.
    [3]Sohn H. Y. and Psldey S., “Synthesis of Ultrafine Particles and Thin Films of by The Vapor-Phase Hydrogen Coreduction of The Constituent Metal Chlorides”, Mater. Sci. ent. A, Vol.247, pp165-172, 1998
    [4]Gnedovets A. G., Kulbatskii E. B., Smurov I., and Glamant G., ”Particles Synthesis in Erosive Laser Plasma in A High Pressure Atmosphere”, Applied surface Science, Vol. 96-98, pp.272-279, 1996.
    [5]Adent M., Beyer E., Herziger G. and Kunze H., “Laser-Induced Vaporization of A Metal Surface”, J. Phys. D: Appl. Phys. Vol.25, pp.57-65, 1992.
    [6]Chrisey D. B. and Hubler G. K., “Pulsed Laser Deposition of Thin Films”, pp.167-198, J. Wiley, New York, 1994.
    [7]Mstsunawn A. and Katayama S., “Laser Production of Ultra-Fine Metallic and Ceramic Particles”, ICALEO, pp.205-211, 1985.
    [8]Bulgakov A. V. and Bulgakova N. M., “Dynamics of Laser-Induced Plume Expansion into An Ambient Gas During Film Deposition”, J. Phys. D: Appl. Phys. Vol.28, pp.1710-1718, 1995.
    [9]Aden M., Kreutz E. W. and Voss A., “Laser-Induced Plasma Formation During Pulsed Laser Deposition”, J. Phys. D: Appl. Phys. Vol.26, pp.1545-1553, 1993.
    [10]Liu X. H., Zhang X. G., Li Y., Wang X. Y. and Lou N. Q., “Cluster Formation by Direct Laser Vaporization: Evidence for the Twofold Mechanism”, Chem. Phys. Letters. Vol. 288 ,pp. 804-808,1998.
    [11]Preuss D. R., Pace S. A., and Gole J. L., “The Supersonic Expansion of Pure Copper Vapor”, J. Chem. Phys. Vol.71, No.9, pp.3553-3560, 1979.
    [12]Rlley S. J., Parks E. K., Pobo C. R., and Wexler S., “Generation of Continuous Beams of Refractory Metal Clusters”, J. Phys. Chem. Vol.86, pp.3911-3913, 1982.
    [13]Dietz T. G., Duncan M. A., Powers D. E. and Smalley R. E., “Laser Production of Supersonic Metal Cluster Beams”, J. Chem. Phys. Vol.74, No.11, pp6511-6512, 1981.
    [14]Power D. E., Hansen S. G., Geusic M. E., Puiu A. C., Hopkins J. B., Dietz T. G., Duncan M. A., Langeidge-Smith P. R. R. and Smalley R.E., “Supersonic Metal Cluster Beams: Laser Photo Ionization Studies of Cu ”, J. Phys. Chem. Vol. 86, pp. 2556-2560, 1982.
    [15]Milani P. and Deheer W. A., “Improved Pulsed Laser Vaporization Source for Production of Intense Beams of Neutral and Ionized Clusters”, Rev. Sci. Instrum. Vol.61, NO.7, pp. 1835-1838, 1990.
    [16]Mathur P., Apelian D. and Lawley A., “Analysis of The Spray Deposition Process”, Acta metall., Vol. 37, No.2, pp. 429-443,1989.
    [17]Lee E. S., and Anh S., ”Solidification Progress and Heat Transfer Analysis of Gas-Atomized Alloy Droplets During Spray Forming”, Acta metal. Mater. Vol. 42, No.9, pp.3231-3243, 1994.
    [18]Liu H., Rangel R. H. and Lavernia E. J., “Modeling of Reactive Atomization and Deposition Processing of Ni3Al”, Acta metal. Mater. Vol.42, No.10, pp.3277-3289, 1994.
    [19]Ready J. F., “Effects of High-Power Laser Radiation”, pp.95-123, Academic Press, New York, 1971.
    [20]FLUENT 4.4 User Guide Volume 4,Fluent Inc. 1997.
    [21]Seiner, J. M. and Norum, T. D., “Experiments of Shock Associated Noise on Supersonic Jets”, AIAA, pp.79-1526, 1979.
    [22]Chen K., Yao Y. L. and Mode V., “Numerical Simulation of Gas Jet Effects in Laser Machining”, Section B-ICALEO, pp.120, 1998.
    [23]Peyret R. and Taylor T. D., ” Computational methods for fluid flow”, Springer-Verlag, New York, 1983.
    [24]Lavernia E. J. and Grant N. J.,“Spray Deposition of Metals: A Review”, Mater. Sci. Eng., Vol.98, pp.381, 1988.
    [25]Lavernia E. J. and Wu Y., ”Spray Atomization and Deposition” pp.165-180, John Wiley and Sons, New York, 1996.
    [26]Schlichting H., “Boundary-Layer Theory”, pp.747-750, Mcgraw-Hill, New York, 1968.
    [27]Haasen P., “Physical Metallurgy”, pp.54-76, Cambridge University Press, Cambridge, 1978.
    [28]Li B., Liang X., Earthman J. C. and Lavernia E. J., Two Dimensional Modeling of Momentum and Thermal Behavior During Spray Atomization of γ-TiAl, Acta. Mater. Vol. 44, No. 6, pp. 2409-2420, 1996.
    [29]Bergmann D., Fritsching U. and Bauckhage K., “A Mathematical Model for Cooling and Rapid Solidification of Molten Metal Droplets”, Int. J. Therm. Sci., Vol. 39, pp. 53-62, 2000.
    [30]Flemings M. C., ”Solidification Processing”, pp. 290-305, Mcgraw-Hill, New York, 1974.
    [31]Clift R., Grace J. R. and Weber M. E., ”Bubbles, Drops and Particles”, pp.111-113, Academic Press, New York, 1978.
    [32]Liang, x. and Lavernia, E. J., “Solidification and Microstructure Evolution During Spray Atomization and Deposition of NiAl”, Mater. Sci. Engng. A, Vol.161., pp.221, 1993.
    [33]John J. E. A., ”Gas Dynamics”, pp.63-87, Allyn and Bacon Inc., Boston, 1993.
    [34]Smithells C. J., “Metal Reference book”, pp.187, Butterworths, London, 1976.
    [35]劉海平,噴覆成型凝固現象與數值模擬之探討研究,國立成功大學材料所碩士論文,民
    國88年
    [36]劉昶熠,雷射披覆之溫度分析,國立成功大學機械工程研究所碩士論文,民國90年

    下載圖示 校內:2013-07-21公開
    校外:2013-07-21公開
    QR CODE