| 研究生: |
劉子瑜 Liu, Tzu-Yu |
|---|---|
| 論文名稱: |
近紅外光奈米材料合成及在顯影與藥物釋放上之應用 Near-Infrared Nanomaterials: Synthesis, Imaging and Drug Release |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 近紅外光 、量子點 、硫化鉛 、金奈米棒 、去氧核醣核酸 |
| 外文關鍵詞: | NIR, Quantum Dots, PbS, gold nanorod, DNA |
| 相關次數: | 點閱:82 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用光作為激發源或者是以偵測光訊號為基礎的光學技術,不管是在生物顯影、光觸發藥物釋放,或是光熱治療等奈米生醫應用中,都佔有很重要的角色。生物組織對於波段為650-900 nm (近紅外光範圍)的光線有最小的吸收係數,而此波段的光線,不管是作為激發光源,或是放光訊號,皆具有最深的穿透深度,因此也最適於生物醫學之應用,此光波段亦稱為near-infrared (NIR) window。為了能獲得位於生物體內深層組織的資訊,以及配合光熱治療所使用的近紅外光源以達到最佳的光熱轉換效率,發展放光或是吸收位於近紅外光波段的奈米粒子和具有多功能性的奈米結構已成為奈米生醫應用上的一個重要研究領域。
本論文之研究主要著重在近紅外光(near-infrared,NIR)奈米材料之合成及在顯影與藥物釋放上之應用。在第一部分的實驗中,我們研究放射型近紅外光奈米材料的合成,以低溫非注入式合成法製備具有狹窄螢光光譜半高寬,能隙吸收範圍位於600-900 nm之近紅外光硫化鉛量子點,除了使用量子點的光譜性質來觀察奈米粒子的生長過程,也詳細地探討製備中的合成參數對於生成量子點的影響,而利用加入油酸鎘錯合物(Cd-OA complex)至已生成的硫化鉛量子點溶液中,可以進一步地調控量子點的能隙大小及光學性質,得到具有較短能隙吸收波長以及較高放光強度的量子點。在第二和第三部分的實驗中,則是研究吸收型近紅外光奈米材料,包括在顯影與藥物釋放上之應用。我們將雙股去氧核醣核酸(Deoxyribonucleic acid,DNA)修飾金奈米棒作為抗癌藥物小紅莓(Doxorubicin,Dox)載體,利用金奈米棒在近紅外光區的高光熱轉換性質,在條件溫和的連續波二極體近紅外光雷射(CW diode laser,808 nm)照射下,藉由雙股DNA的去雜交(dehybridization)將所嵌合的藥物做有效地釋放,並藉由金奈米棒的散射光在暗場顯微鏡下做藥物載體的觀察。若配合較高強度的雷射,則可同時結合光熱治療與近紅外光觸發的Dox毒性而產生加乘性的毒殺癌細胞效果。Dox-雙股DNA金奈米棒載體可同時提供分子顯影、化療作用、以及光熱毒性等多功能。利用雙股DNA金奈米棒可藉由非共價性結合力搭載不同分子的性質,我們也將雙股DNA修飾金奈米棒的搭載分子換成細胞核染劑,1,1'-((4,4,7,7-tetramethyl)-4,7-diazaundeca-
methylene)-bis-4-(3-methyl-2,3-dihydro(benzo-1,3-oxazole)-2-methylidene)-quinolinium (YOYO),並檢視YOYO-雙股DNA金奈米棒作為細胞螢光探針之應用潛力,結果顯示藉由結合上雙股DNA金奈米棒,可以使細胞攝入不具有細胞膜通透性的YOYO分子,並且進入細胞核進行細胞內DNA染色。由於各種嵌入分子的特性不同,也使得嵌入分子與雙股DNA金奈米棒所形成的複合物會表現不同的行為。
Optical technique has been playing an important role in nanomedicine, including light-triggered drug release and photothermal therapy. Because biological tissues have the lowest absorption coefficient in the Near-Infrared (NIR) region, NIR light has the deepest penetration length when used as an excitation source or optical signals, and is most suitable for biomedical application. To obtain biological information in deeper tissues and achieve the optimal condition for photothermal therapy, development of NIR nanomaterials which can emit or absorb NIR light has been a crucial field in nanomedicine.
This thesis mainly focuses on the development of NIR nanomaterials, namely NIR-emissive and NIR-absorptive nanomaterials, and their applications in bioimaging and drug release. We developed a noninjection and low temperature approach to synthesize small PbS quantum dots (QDs) with bandgap in wavelength shorter than 900 nm and with narrow bandwidth; the growth temperature can be as low as room temperature. For our noninjection approach, systematic study was performed on synthetic parameters affecting the growth. Bandgap engineering of our as-synthesized PbS nanocrystals was performed straightforwardly at room temperature via the mixing of a solution of Cd oleate in ODE; significant blueshift of bandgap absorption and photoemission with enhanced PL efficiency was accomplished. With respect to the NIR-absorptive nanomaterials, we integrated DNA duplex onto Au NR, due to the non-covalent interaction between the DNA duplex and doxorubicin, the DNA duplex-Au nanorods can serve as drug carriers by intercalating doxorubicin into the DNA duplexes. Taking the advantage of the photothermal conversion of the Au NRs under NIR laser irradiation, the remotely NIR-triggering drug release was demonstrated to turn on fluorescence and toxicity in Dox. Combined photothermal hyperthermia and the near-infrared triggered doxorubicin release killed malignant cells more efficiently. The Dox-DNA duplex-Au NR platform is capable of providing pure chemo-toxicity or combined hyperthermia/chemo-toxicity through appropriately selecting the intensity of the CW diode NIR, and it can also act as a scattering contrast agent. By using the non-covalent interaction between the DNA duplex and another organic molecule, YOYO, we have examined the potential of YOYO-DNA duplex-Au NR as a fluorescent probe in A549 cells, while the YOYO molecule itself is a well-known live cell-impermeable stain. The results show that by using different intercalating molecules, the organic molecule- DNA duplex-Au NR behaves differently.
1. Allhoff, F.; Lin, P.; Moore, D., What is Nanotechnology and Why does it Matter?: from Science to Ethics. John Wiley and Sons 2010, 3-5.
2. Alivisatos, A. P., Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem. 1996, 100 (31), 13226-13239.
3. Faraday, M., The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Phil. Trans. R. Soc. Lond. 1857, 147 (0), 145-181.
4. Binnig, G.; Rohrer, H., Scanning Tunneling Microscopy. IBM Journal of Research and Development 1986, 30 (4), 355-369.
5. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E., C60: Buckminsterfullerene. Nature 1985, 318, 162-163.
6. 王崇人, 神奇的奈米科學. 科學發展月刊 2002, 354, 48-51.
7. Wang, Z. L.; Petroski, J. M.; Green, T. C.; El-Sayed, M. A., Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals. J. Phys. Chem. B 1998, 102 (32), 6145-6151.
8. 莊萬發, 超微粒子理論應用. 復漢出版社 1995.
9. Prime, K. L.; Whitesides, G. M., Self-Assembled Organic Monolayers: Model Systems for Studying Adsorption of Proteins at Surfaces. Science 1991, 252 (5009), 1164-1167
10. Liu, W.; Greytak, A. B.; Lee, J.; Wong, C. R.; Park, J.; Marshall, L. F.; Jiang, W.; Curtin, P. N.; Ting, A. Y.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G., Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. J. Am. Chem. Soc. 2010, 132 (2), 472-483.
11. Lipka, J.; Semmler-Behnke, M.; Sperling, R. A.; Wenk, A.; Takenaka, S.; Schleh, C.; Kissel, T.; Parak, W. J.; Kreyling, W. G., Biodistribution of PEG-Modified Gold Nanoparticles Following Intratracheal Instillation and Intravenous Injection. Biomaterials 2010, 31 (25), 6574-6581.
12. Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y., PEG-Modified Gold Nanorods with a Stealth Character for In Vivo Applications. J. Control. Release 2006, 114 (3), 343–347.
13. Akerman, M. E.; Chan, W. C.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E., Nanocrystal Targeting In Vivo. Proc. Natl. Acad. Sci. USA 2002, 99 (20), 12617–12621.
14. Hoshino, A.; Fujioka, K.; Oku, T.; Nakamura, S.; Suga, M.; Yamaguchi, Y.; Suzuki, K.; Yasuhara, M.; Yamamoto, K., Quantum Dots Targeted to the Assigned Organelle in Living Cells. Microbiol. Immunol. 2004, 48 (12), 985-994.
15. Suzuki, K. G.; Fujiwara, T. K.; Edidin, M.; Kusumi, A., Dynamic Recruitment of Phospholipase Cγ at Transiently Immobilized GPI-Anchored Receptor Clusters Induces IP3–Ca2+ Signaling: Single-Molecule Tracking Study 2. J. Cell. Biol. 2007, 177 (4), 731-742.
16. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41 (12), 1578-1586.
17. Nuzzo, R. G.; Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A., Nanostructured Plasmonic Sensors. Chem. Rev. 2008, 108 (2), 494-521.
18. Kreibig, U.; Vollmer, M., Optical Properties of Metal Clusters. Springer, Berlin 1995, 25, 532.
19. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107 (3), 668–677.
20. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics 2007, 2 (3), 107-118.
21. Eustis, S.; El-Sayed, M. A., Why Gold Nanoparticles are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 2006, 35, 209–217.
22. Wise, F. W., Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement. Acc. Chem. Res. 2000, 33 (11), 773-780.
23. Memming, R., Semiconductor Electrochemistry, 1st ed. Wiley-Veh, New York 2001, 264.
24. Freitas, R. A., Jr., What is Nanomedicine? Nanomedicine 2005, 1 (1), 2-9.
25. Wagner, V.; Dullaart, A.; Bock, A.-K.; Zweck, A., The Emerging Nanomedicine Landscape. Nat. Biotechnol. 2006, 24 (10), 1211-1217
26. Haes, A. J.; Duyne, R. P. V., A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc. 2002, 124 (35), 10596–10604.
27. Jain, P. K.; El-Sayed, M. A., Surface Plasmon Resonance Sensitivity of Metal Nanostructures: Physical Basis and Universal Scaling in Metal Nanoshells. J. Phys. Chem. C 2007, 111 (47), 17451–17454.
28. Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Duyn, R. P. V., A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Assay for Alzheimer's Disease. Nano Lett. 2004 4(6), 1029–1034.
29. Yu, C.; Irudayaraj, J., Multiplex Biosensor Using Gold Nanorods. Anal. Chem. 2007, 79 (2), 572–579.
30. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997, 277, 1078–1080.
31. Thompson, D. G.; Enright, A.; Faulds, K.; Smith, W. E.; Graham, D., Ultrasensitive DNA Detection Using Oligonucleotide-Silver Nanoparticle Conjugates. Anal. Chem. 2008, 80 (8), 2805-2810.
32. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker. Nano Lett. 2007, 7 (6), 1591–1597.
33. Michaels, A. M.; Jiang, J.; Brus, L., Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B 2000, 104 (50), 11965–11971.
34. Kawasaki, E. S.; Player, A., Nanotechnology, Nanomedicine, and the Development of New, Effective Therapies for Cancer. Nanomedicine 2005, 1 (2), 101–109.
35. Venter, J. C. et al., The Sequence of the Human Genome. Science 2001, 291 (5507), 1304-1351
36. Hahn, M. A.; Singh, A. K.; Sharma, P.; Brown, S. C.; Moudgil, B. M., Nanoparticles as Contrast Agents for In-Vivo Bioimaging: Current Status and Future Perspectives. Anal. Bioanal. Chem. 2011, 399 (1), 3-27.
37. http://en.wikipedia.org/wiki/File:MolecularImagingTherapy.jpg
38. Walling, M. A.; Novak, J. A.; Shepard, J. R., Quantum Dots for Live Cell and In Vivo Imaging. Int. J. Mol. Sci. 2009, 10 (2), 441-491.
39. Tokumasu, F.; Fairhurst, R. M.; Ostera, G. R.; Brittain, N. J.; Hwang, J.; Wellems, T. E.; Dvorak, J. A., Band 3 Modifications in Plasmodium Falciparum-Infected AA and CC Erythrocytes Assayed by Autocorrelation Analysis Using Quantum Dots. J. Cell. Sci. 2005, 118 (5), 1091-1098.
40. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science 2005, 307 (5709), 538-544.
41. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4, 435-446.
42. Sokolov, K.; Follen, M.; Aaron, J.; Pavlova, I.; Malpica, A.; Lotan, R.; Richards-Kortum, R., Real-Time Vital Optical Imaging of Precancer Using Anti-Epidermal Growth Factor Receptor Antibodies Conjugated to Gold Nanoparticles. Cancer Res. 2003, 63, 1999-2004.
43. El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett. 2005, 5 (5), 829-834.
44. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110 (14), 7238–7248.
45. LaVan, D. A.; McGuire, T.; Langer, R., Small-Scale Systems for In Vivo Drug Delivery. Nat. Biotechnol. 2003, 21 (10), 1184-1191.
46. Kipp, J. E., The Role of Solid Nanoparticle Technology in the Parenteral Delivery of Poorly Water-Soluble Drugs. Int. J. Pharm. 2004, 284, 109-122.
47. Torchilin, V. P., Recent Advances with Liposomes as Pharmaceutical Carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.
48. Koziara, J. M.; Lockman, P. R.; Allen, D. D.; Mumper, R. J., Paclitaxel Nanoparticles for the Potential Treatment of Brain Tumors. J. Control. Release 2004, 99 (2), 259-269.
49. Farokhzad, O. C.; Jon, S.; Khademhosseini, A.; Tran, T.-N. T.; LaVan, D. A.; Langer, R., Nanoparticle-Aptamer Bioconjugates: A New Approach for Targeting Prostate Cancer Cell. Cancer Res. 2004, 64, 7668–7672.
50. Meng, F.; Zhong, Z.; Feijen, J., Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 2009, 10 (2), 197-209.
51. Zhu, Y.; Ikoma, T.; Hanagata, N.; Kaskel, S., Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery. Small 2010, 6 (3), 471-478.
52. Popplewell, J. F.; King, S. J.; Day, J. P.; Ackrill, P.; Fifield, L. K.; Cresswell, R. G.; Tada, M. L. d.; Liu, K., Kinetics of Uptake and Elimination of Silicic Acid by a Human Subject: A Novel Application of 32Si and Accelerator Mass Spectrometry. J. Inorg. Biochem. 1998, 69 (3), 177-180.
53. Hu, K.-W.; Hsu, K.-C.; Yeh, C.-S., pH-Dependent Biodegradable Silica Nanotubes Derived from Gd(OH)3 Nanorods and Their Potential for Oral Drug Delivery and MR Imaging. Biomaterials 2010, 31 (26), 6843-6848.
54. Huang, C.-C.; Huang, W.-L.; Yeh, C.-S., Shell-by-Shell Synthesis of Multi-Shelled Mesoporous Silica Nanospheres for Optical Imaging and Drug Delivery. Biomaterials 2011, 32 (2), 556-564.
55. Gonzales-Weimuller, M.; Zeisberger, M.; Krishnan, K. M., Size-Dependant Heating Rates of Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia. J. Magn. Magn. Mater. 2009, 321 (13), 1947-1950.
56. Thomas, L. A.; Dekker, L.; Kallumadil, M.; Southern, P.; Wilson, M.; Nair, S. P.; Pankhurst, Q. A.; Parkin, I. P., Carboxylic Acid-Stabilised Iron Oxide Nanoparticles for Use in Magnetic Hyperthermia. J. Mater. Chem. 2009, 19 (36), 6529–6535.
57. Moon, H. K.; Lee, S. H.; Choi, H. C., In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 2009, 3 (11), 3707–3713.
58. Ghosh, S.; Dutta, S.; Gomes, E.; Carroll, D.; Ralph D’Agostino, J.; Olson, J.; Guthold, M.; Gmeiner, W. H., Increased Heating Efficiency and Selective Thermal Ablation of Malignant Tissue with DNA-Encased Multiwalled Carbon Nanotubes. ACS Nano 2009, 3 (9), 2667–2673.
59. Kim, J. W.; Shashkov, E. V.; Galanzha, E. I.; Kotagiri, N.; Zharov, V. P., Photothermal Antimicrobial Nanotherapy and Nanodiagnostics with Self-Assembling Carbon Nanotube Clusters. Lasers Surg. Med. 2007, 39 (7), 622-634.
60. Jain, P. K.; Qian, W.; El-Sayed, M. A., Ultrafast Cooling of Photoexcited Electrons in Gold Nanoparticle-Thiolated DNA Conjugates Involves the Dissociation of the Gold-Thiol Bond. J. Am. Chem. Soc. 2006, 128 (7), 2426-2433.
61. Link, S.; Burda, C.; Nikoobakht, B.; El-Sayed, M. A., How Long does it Take to Melt a Gold Nanorod?: A Femtosecond Pump–Probe Absorption Spectroscopic Study. Chem. Phys. Lett. 1999, 315 (1-2), 12-18.
62. El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles. Cancer Lett. 2006, 239 (1), 129–135.
63. Weissleder, R., A Clearer Vision for In Vivo Imaging. Nat. Biotechnol. 2001, 19, 316-317.
64. He, X.; Wang, K.; Cheng, Z., In Vivo Near-Infrared Fluorescence Imaging of Cancer with Nanoparticle-Based Probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2 (4), 349-366.
65. Santra, S.; Dutta, D.; Walter, G. A.; Moudgil, B. M., Fluorescent Nanoparticle Probes for Cancer Imaging. Technol. Cancer Res. Treat. 2005, 4 (6), 593-602.
66. Bailey, R. E.; Nie, S., Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size. J. Am. Chem. Soc. 2003, 125 (23), 7100-7106.
67. Chang, J.-Y.; Wang, S.-R.; Yang, C.-H., Synthesis and Characterization of CdTe/CdS and CdTe/CdSe Core/Shell Type-II Quantum Dots in a Noncoordinating Solvent. Nanotechnology 2007, 18 (34), 345602.
68. Mao, W.; Guo, J.; Yang, W.; Wang, C.; He, J.; Chen, J., Synthesis of High-Quality Near-Infrared-Emitting CdTeS Alloyed Quantum Dots via the Hydrothermal Method. Nanotechnology 2007, 18 (48), 485611.
69. Huang, X.; Neretina, S.; El-Sayed, M. A., Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 2009, 21 (48), 4880-4910.
70. Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J., Nanoengineering of Optical Resonances. Chem. Phys. Lett. 1998, 288 (2-4), 243–247.
71. Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y., Gold Nanocages: Synthesis, Properties, and Applications. Acc. Chem. Res. 2008, 41 (12), 1587-1595.
72. Chan, W. C., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281 (5385), 2016-2018.
73. Liu, W.; Howarth, M.; Greytak, A. B.; Zheng, Y.; Nocera, D. G.; Ting, A. Y.; Bawendi, M. G., Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. J. Am. Chem. Soc. 2008, 130 (4), 1274–1284.
74. Dong, L.; Chu, Y.; Liu, Y.; Li, M.; Yang, F.; Li, L., Surfactant-Assisted Fabrication PbS Nanorods, Nanobelts, Nanovelvet-Flowers and Dendritic Nanostructures at Lower Temperature in Aqueous Solution. J. Colloid Interface Sci. 2006, 301 (2), 503-10.
75. Zhao, P.; Chen, G.; Hu, Y.; He, X.; Wu, K.; Cheng, Y.; Huang, K., Preparation of Dentritic PbS Nanostructures by Ultrasonic Method. J. Cryst. Growth 2007, 303 (2), 632-637.
76. Zhang, Y. H.; Guo, L.; Yin, P. G.; Zhang, R.; Zhang, Q.; Yang, S. H., A Highly Regular Hexapod Structure of Lead Sulfide: Solution Synthesis and Raman Spectroscopy. Chem. Eur. J. 2007, 13 (10), 2903-7.
77. Wang, Z.; Zhao, B.; Zhang, F.; Mao, W.; Qian, G.; Fan, X., Novel Single-Crystal PbS Nanowires Directed by [200]. Materials Letters 2007, 61 (17), 3733-3735.
78. Wang, W.; Li, Q.; Li, M.; Lin, H.; Hong, L., Growth of PbS Microtubes with Quadrate Cross Sections. J. Cryst. Growth 2007, 299 (1), 17-21.
79. Zhang, Y.; Chu, Y.; Yang, Y.; Dong, L.; Yang, F.; Liu, J., Fabrication of Polystyrene–PbS Core-Shell and Hollow PbS Microspheres with Sulfonated Polystyrene Templates. Colloid Polym. Sci. 2007, 285 (9), 1061-1066.
80. Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X. S.; Sargent, E. H.; Kumacheva, E., PbS Quantum Dots with Stable Efficient Luminescence in the Near-IR Spectral Range. Adv. Mater. 2004, 16 (11), 926-929.
81. Hines, M. A.; Scholes, G. D., Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater. 2003, 15 (21), 1844-1849.
82. Warner, J. H.; Thomsen, E.; Watt, A. R.; Heckenberg, N. R.; Rubinsztein-Dunlop, H., Time-Resolved Photoluminescence Spectroscopy of Ligand-Capped PbS Nanocrystals. Nanotechnology 2005, 16 (2), 175-179.
83. Abel, K. A.; Shan, J.; Boyer, J.-C.; Harris, F.; Veggel, F. C. J. M. v., Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine. Chem. Mater 2008, 20 (12), 3794–3796.
84. Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; Freymann, G. v.; Ozin, G. A., Multigram Scale, Solventless, and Diffusion-Controlled Route to Highly Monodisperse PbS Nanocrystals. J. Phys. Chem. B 2006, 110 (2), 671-673.
85. Liu, J.; Yu, H.; Wu, Z.; Wang, W.; Peng, J.; Cao, Y., Size-Tunable Near-Infrared PbS Nanoparticles Synthesized from Lead Carboxylate and Sulfur with Oleylamine as Stabilizer. Nanotechnology 2008, 19 (34), 345602.
86. Watt, A.; Rubinsztein-Dunlop, H.; Meredith, P., Growing Semiconductor Nanocrystals Directly in a Conducting Polymer. Materials Letters 2005, 59 (24-25), 3033-3036.
87. Yang, Y., A Novel Electrochemical Preparation of PbS Nanoparticles. Mat. Sci. Eng. B 2006, 131 (1-3), 200-202.
88. Wu, M.; Zhong, H.; Jiao, Z.; Li, Z.; Sun, Y., Synthesis of PbS Nanocrystallites by Electron Beam Irradiation. Colloids Surf. A 2008, 313-314, 35-39.
89. Qiao, Z.-P.; Zhang, Y.; Zhou, L.-T.; Xire, Q., Shape Control of PbS Crystals under Microwave Irradiation. Cryst. Growth Des. 2007, 7 (12), 2394-2396.
90. Ding, Y.; Liu, X.; Guo, R., Fabrication of PbS Microstructures with Different Shapes in Aqueous Solutions of Amphiphilic Triblock Copolymer. J. Cryst. Growth 2007, 307 (1), 145-154.
91. Ouyang, J.; Ratcliffe, C. I.; Kingston, D.; Wilkinson, B.; Kuijper, J.; Wu, X.; Ripmeester, J. A.; Yu, K., Gradiently Alloyed ZnxCd1-xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach. J. Phys. Chem. C 2008, 112 (13), 4908-4919.
92. Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D.; Meeldijk, J.; Hickey, S. G., The Hidden Role of Acetate in the PbSe Nanocrystal Synthesis. J. Am. Chem. Soc. 2006, 128 (21), 6792-6793.
93. Yu, W. W.; Peng, X., Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angew. Chem. Int. Ed. 2002, 41 (13), 2368-2371.
94. Ouyang, J.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K., Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Syntheses. J. Phys. Chem. C 2008, 112 (36), 13805–13811.
95. Yu, K.; Zaman, B.; Ripmeester, J. A., Colloidal CdSe Nanocrystals from Tri-n-Octylphosphine: Control of Growth Rate for High Quality and Large-Scale Production by Tuning Cd-to-Se Stoichiometry. J. Nanosci. Nanotechnol. 2005, 5 (4), 669-681.
96. Stouwdam, J. W.; Shan, J.; Veggel, F. C. J. M. v., Photostability of Colloidal PbSe and PbSe/PbS Core/Shell Nanocrystals in Solution and in the Solid State. J. Phys. Chem. C 2007, 111 (3), 1086-1092.
97. Pietryga, J. M.; Werder, D. J.; Williams, D. J.; Casson, J. L.; Schaller, R. D.; Klimov, V. I.; Hollingsworth, J. A., Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission. J. Am. Chem. Soc. 2008, 130 (14), 4879-4885.
98. Liu, T.-Y.; Liu, K.-H.; Liu, D.-M.; Chen, S.-Y.; Chen, I.-W., Temperature-Sensitive Nanocapsules for Controlled Drug Release Caused by Magnetically Triggered Structural Disruption. Adv. Funct. Mater. 2009, 19 (4), 616-623.
99. Mart, R. J.; Liem, K. P.; Webb, S. J., Magnetically-Controlled Release from Hydrogel-Supported Vesicle Assemblies. Chem. Commun. 2009, 7 (17), 2287-2289.
100. Derfus, A. M.; Maltzahn, G. V.; Harris, T. J.; Duza. T.; Vecchio, K. S.; Ruoslahti, E.; Bhatia, S. N., Remotely Triggered Release from Magnetic Nanoparticles. Adv. Mater. 2007, 19 (22), 3932-3936.
101. Choi, S. K.; Thomas, T.; Li, M.-H.; Kotlyar, A.; Desai, A.; Baker, Jr., J. R., Light-Controlled Release of Caged Doxorubicin from Folate Receptor-Targeting PAMAM Dendrimer Nanoconjugate. Chem. Commun. 2010, 46 (15), 2632-2634.
102. Koo, H. Y.; Lee, H.-J.; Kim, J. K.; Choi, W. S., UV-Triggered Encapsulation and Release from Polyelectrolyte Microcapsules Decorated with Photoacid Generators. J. Mater. Chem. 2010, 20 (19), 3932-3937.
103. Wu, C.; Chen, C.; Lai, J.; Chen, J.; Mu, X.; Zheng, J.; Zhao, Y., Molecule-Scale Controlled-Release System Based on Light-Responsive Silica Nanoparticles. Chem. Commun. 2008, (23), 2662-2664.
104. Cheng, F.-Y.; Su, C.-H.; Wu, P.-C.; Yeh, C.-S., Multifunctional Polymeric Nanoparticles for Combined Chemotherapeutic and Near-Infrared Photothermal Cancer Therapy In Vitro and In Vivo. Chem. Commun. 2010, 46 (18), 3167-3169.
105. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128 (6), 2115-2120.
106. Hauck, T. S.; Jennings, T. L.; Yatsenko, T.; Kumaradas, J. C.; Chan, W. C. W., Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia. Adv. Mater. 2008, 20 (20), 3832-3838.
107. Yang, J.; Lee, J.; Kang, J.; Oh, S. J.; Ko, H.-J.; Son, J.-H.; Lee, K.; Suh, J.-S.; Huh, Y.-M.; Haam, S., Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial Cancer. Adv. Mater. 2009, 21 (43), 4339-4342.
108. Jin, Y.; Gao, X., Spectrally Tunable Leakage-Free Gold Nanocontainers. J. Am. Chem. Soc. 2009, 131 (49), 17774-17776.
109. You, J.; Zhang, G.; Li, C., Exceptionally High Payload of Doxorubicin in Hollow Gold Nanospheres for Near-Infrared Light-Triggered Drug Release. ACS Nano 2010, 4 (2), 1033-1041.
110. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L., Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proc. Natl. Acad. Sci. USA 2003, 100 (23), 13549-13554.
111. Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.; Schwartz, A. G. et al., Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light. Nat. Mater. 2009, 8 (12), 935-939.
112. Hu, K.-W.; Huang, C.-C.; Hwu, J.-R.; Su, W.-C.; Shieh, D.-B.; Yeh, C.-S., A New Photothermal Therapeutic Agent: Core-Free Nanostructured AuxAg1-x Dendrites. Chem. Eur. J. 2008, 14 (10), 2956-2964.
113. Hu, K.-W.; Liu, T.-M.; Chung, K.-Y.; Huang, K.-S.; Hsieh, C. T.; Sun, C.-K.; Yeh, C.-S., Efficient Near-IR Hyperthermia and Intense Nonlinear Optical Imaging Contrast on the Gold Nanorod-in-Shell Nanostructures. J. Am. Chem. Soc. 2009, 131 (40), 14186-14187.
114. Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K., Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. ACS Nano 2009, 3 (1), 80-86.
115. Takahashi, H.; Niidome, Y.; Yamada, S., Controlled Release of Plasmid DNA from Gold Nanorods Induced by Pulsed Near-Infrared Light. Chem. Commun. 2005, (1), 2247-2249.
116. Chen, C.-C.; Lin, Y.-P.; Wang, C.-W.; Tzeng, H.-C.; Wu, C.-H.; Chen, Y.-C.; Chen, C.-P.; Chen, L.-C.; Wu, Y.-C., DNA-Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by Near Infrared Irradiation. J. Am. Chem. Soc. 2006, 128 (11), 3709–3715.
117. Volodkin, D. V.; Skirtach, A. G.; Mӧhwald, H., Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 1807-1809.
118. Wu, G.; Mikhailovsky, A.; Khant, H. A.; Fu, C.; Chiu, W.; Zasadzinski, J. A., Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. J. Am. Chem. Soc. 2008, 130 (26), 8175-8177.
119. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.-H.; Yoo, K.-H., Multifunctional Nanoparticles for Combined Doxorubicin and Photothermal Treatments. ACS Nano 2009, 3 (10), 2919-2926.
120. You, J.; Shao, R.; Wei, X.; Gupta, S.; Li, C., Near-Infrared Light Triggers Release of Paclitaxel from Biodegradable Microspheres: Photothermal Effect and Enhanced Antitumor Activity. Small 2010, 6 (9), 1022-1031.
121. Oishi, M.; Nakamura, T.; Jinji, Y.; Matsuishi, K.; Nagasaki, Y., Multi-Stimuli-Triggered Release of Charged Dye from Smart PEGylated Nanogels Containing Gold Nanoparticles to Regulate Fluorescence Signals. J. Mater. Chem. 2009, 19 (33), 5909-5912.
122. Bikram, M.; Gobin, A. M.; Whitmire, R. E.; West, J. L., Temperature-Sensitive Hydrogels with SiO2–Au Nanoshells for Controlled Drug Delivery. J. Control. Release 2007, 123 (3), 219-227.
123. Radt, B.; Smith, T. A.; Caruso, F., Optically Addressable Nanostructured Capsules. Adv. Mater. 2004, 16 (23-24), 2184-2189.
124. Angelatos, A. S.; Radt, B.; Caruso, F., Light-Responsive Polyelectrolyte/Gold Nanoparticle Microcapsules. J. Phys. Chem. B 2005, 109 (7), 3071-3076.
125. Martínez, R.; Chacón-García, L., The Search of DNA-Intercalators as Antitumoral Drugs: What it Worked and What did not Work. Curr. Med. Chem. 2005, 12 (2), 127-151.
126. Ihmels, H.; Otto, D., Intercalation of Organic Dye Molecules into Double-Stranded DNA-General Principles and Recent Developments. Top. Curr. Chem. 2005, 258, 161-204.
127. Bagalkot, V.; Farokhzad, O. C.; Langer, R.; Jon, S., An Aptamer-Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angew. Chem., Int. Ed. 2006, 45 (48), 8149–8152.
128. Kim, D.; Jeong, Y. Y.; Jon, S., A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano 2010, 4 (7), 3689–3696.
129. Zijlstra, P.; Bullen, C.; Chon, J. W. M.; Gu, M., High-Temperature Seedless Synthesis of Gold Nanorods. J. Phys. Chem. B 2006, 110 (39), 19315-19318.
130. Hurst, S. J.; Lytton-Jean, A. K. R.; Mirkin, C. A., Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes. Anal.Chem. 2006, 78 (24), 8313–8318.
131. Wijaya, A.; Hamad-Schifferli, K., Ligand Customization and DNA Functionalization of Gold Nanorods via Round-Trip Phase Transfer Ligand Exchange. Langmuir 2008, 24 (18), 9966–9969.
132. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L., One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. J. Am. Chem. Soc. 1998, 120 (9), 1959-1964.
133. Zhao, W.; Lee, T. M. H.; Leung, S. S. Y.; Hsing, I.-M., Tunable Stabilization of Gold Nanoparticles in Aqueous Solutions by Mononucleotides. Langmuir 2007, 23 (13), 7143-7147.
134. Yu, C.; Varghese, L.; Irudayaraj, J., Surface Modification of Cetyltrimethylammonium Bromide-Capped Gold Nanorods to Make Molecular Probes. Langmuir 2007, 23 (17), 9114-9119.
135. Demers, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, III, R. A.; Letsinger, R. L.; Elghanian, R.; Viswanadham, G., A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles. Anal. Chem. 2000, 72 (22), 5535-5541.
136. Cashman, D. J.; Scarsdale, J. N.; Kellogg, G. E., Hydropathic Analysis of the Free Energy Differences in Anthracycline Antibiotic Binding to DNA. Nucleic Acids Res. 2003, 31 (15), 4410-4416.
137. Frederick, C. A.; Williams, L. D.; Ughetto, G.; van der Mare1, G. A.; van Boom, J. H.; Rich, A.; Wang, A. H.-J., Structural Comparison of Anticancer Drug-DNA Complexes: Adriamycin and Daunomycin. Biochemistry 1990, 29 (10), 2538-2549.
138. Schneider, Y.-J.; Baurain, R.; Zenebergh, A.; Trouet, A., DNA-Binding Parameters of Daunorubiein and Doxorubiein in the Conditions Used for Studying the Interaction of Anthraeyeline-DNA Complexes with Cells In Vitro. Cancer Chemother. Pharmacol. 1979, 2, 7-10.
139. Alexander, C. M.; Maye, M. M.; Dabrowiak, J. C., DNA-Capped Nanoparticles Designed for Doxorubicin Drug Delivery. Chem. Commun. 2011, 47 (12), 3418–3420.
140. Nasef, H.; Ozalp, V. C.; Beni, V.; O’Sullivan, C. K., Melting Temperature of Surface-Tethered DNA. Anal. Biochem. 2010, 406 (1), 34–40.
141. Jin, R.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C., What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc. 2003, 125 (6), 1643-1654.
142. Lee, S. E.; Liu, G. L.; Kim, F.; Lee, L. P., Remote Optical Switch for Localized and Selective Control of Gene Interference. Nano Lett. 2009, 9 (2), 562-70.
143. Chen, Y.; Chen, H.; Zeng, D.; Tian, Y.; Chen, F.; Feng, J.; Shi, J., Core/Shell Structured Hollow Mesoporous Nanocapsules: A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery. ACS Nano 2010, 4 (10), 6001–6013.
144. Kim, J.; Lee, J. E.; Lee, S. H.; Yu, J. H.; Lee, J. H.; Park, T. G.; Hyeon, T., Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery. Adv. Mater. 2008, 20 (3), 478–483.
145. Rye, H. S.; Yue, S.; Wemmer, D. E.; Quesada, M. A.; Haugland, R. P.; Mathies, R. A.; Glazer, A. N., Stable Fluorescent Complexes of Double-Stranded DNA with Bis-Intercalating Asymmetric Cyanine Dyes: Properties and Applications. Nucleic Acids Res. 1992, 20 (11), 2803-2812.
146. Larsson, A.; Carlsson, C.; Jonsson, M.; Albinssont, B., Characterization of the Binding of the Fluorescent Dyes YO and YOYO to DNA by Polarized Light Spectroscopy. J. Am. Chem. Soc. 1994, 116 (19), 8459-8465.
147. Zheng, H.-Z.; Liu, H.-H.; Chen, S.-X.; Lu, Z.-X.; Zhang, Z.-L.; Pang, D.-W.; Xie, Z.-X.; Shen, P., Yeast Transformation Process Studied by Fluorescence Labeling Technique. Bioconjugate Chem. 2005, 16 (2), 250-254.
148. Abraham, V. C.; Towne, D. L.; Waring, J. F.; Warrior, U.; Burns, D. J., Application of a High-Content Multiparameter Cytotoxicity Assay to Prioritize Compounds Based on Toxicity Potential in Humans. J. Biomol. Screen. 2008, 13 (6), 527-37.
149. Prabha, S.; Labhasetwar, V., Nanoparticle-Mediated Wild-Type p53 Gene Delivery Results in Sustained Antiproliferative Activity in Breast Cancer Cells. Mol. Pharm. 2004, 1 (3), 211-219.
150. Fürstenberg, A.; Julliard, M. D.; Deligeorgiev, T. G.; Gadjev, N. I.; Vasilev, A. A.; Vauthey, E., Ultrafast Excited-State Dynamics of DNA Fluorescent Intercalators: New Insight into the Fluorescence Enhancement Mechanism. J. Am. Chem. Soc. 2006, 128 (23), 7661-7669.
151. Åkerman, B.; Tuite, E., Single- and Double-Strand Photocleavage of DNA by YO, YOYO and TOTO. Nucleic Acids Res. 1996, 24 (6), 1080–1090.
152. Rye, H. S.; Dabora, J. M.; Quesada, M. A.; Mathies, R. A.; Glazer, A. N., Fluorometric assay using dimeric dyes for double- and single-stranded DNA and RNA with picogram sensitivity. Anal. Biochem. 1993, 208 (1), 144-150.
153. Bjorndal, M. T.; Fygenson, D. K., DNA Melting in the Presence of Fluorescent Intercalating Oxazole Yellow Dyes Measured with a Gel-Based Assay. Biopolymers 2002, 65 (1), 40-4.