研究生: |
黃程斌 Huang, Cheng-Pin |
---|---|
論文名稱: |
入侵偵測系統中基於群集演算法之異常偵測技術評比 Clustering-based Techniques for Anomaly Detection in Intrusion Detection System: a Comparative Study |
指導教授: |
曾新穆
Tseng, Vincent Shin-Mu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 群集演算法 、群集標稱技術 、資料探勘 、入侵偵測系統 、異常偵測 |
外文關鍵詞: | labeling techniques, data mining, intrusion detection, anomaly detection, clustering techniques |
相關次數: | 點閱:77 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今的電腦攻擊技術可謂一日千里,近年來入侵偵測系統中提出的不當偵測系統(misuse detection)面對日新月異的攻擊技巧已不敷使用,必須搭配異常偵測(anomaly detection)系統之輔助以偵測未知的攻擊模式。過去已有研究在探討應用群集演算法於異常偵測技術上,但這些研究卻忽略群集演算結果仍須進一步地標稱(label)群集為正常或異常,本研究主要在於入侵偵測系統中基於群集演算法之異常偵測技術評比,對於整個異常偵測技術設計重要的環節,資料前置處理、特徵個數組合、相異度量測、群集演算法與群集標稱技術上作深入的分析討論,以期在異常偵測技術提供重要的參考資訊。
為驗證本研究所評比的各項因素,我們進行一系列的實驗,以評估各種不同特徵個數組合、相異度量測、群集演算法與群集標稱技術對異常偵測在分群品質、偵測準確率(detection rate)、誤判率(false alarm rate)等方面的執行效益。藉由實驗結果之觀察分析,本研究提供應用群集演算法於入侵偵測系統中異常偵測技術上一系列有用的參考資訊。
With the advance of diverse computer attack techniques, the misuse and anomaly detection methods employed in the intrusion detection system limited by nature can no longer catch up with the latest intrusions. Researches to date have been conducted mainly on the evaluation of clustering-based techniques for anomaly detection, but the cluster labeling techniques were less studied.
In this research, we compare different clustering-based techniques for anomaly detection in Intrusion Detection System, which cover the four design factors – distinct attribute combination, dissimilarity measurement, clustering techniques and labeling techniques. A series of experiments were performed to evaluate the impacts of each of the design factors on cluster quality, detection rate, and false alarm rate. It is expected that the outcome of such a comparative study will offer suggestive guidelines on the design of anomaly detection system.
[1] C. C. Aggarwal and P. Yu, ”Outlier Detection for High Dimensional
Data.” Proceedings of the ACM SIGMOD International Conference on
Management of Data, Santa Barbara, CA, May 2001.
[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
Subspace Clustering of High Dimensional Data for Data Mining
Applications.” Proceedings of the ACM SIGMOD International Conference
on Management of Data, Seattle, Washington, 1998.
[3] M. S. Aldenderfer and R. K. Blashfield, “Cluster Analysis.” Sage
Publications, Inc.,1984
[4] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, “OPTICS:
Ordering Points to Identify the Clustering Structure.” Proceedings of
the 1999 ACM SIGMOD International Conference on Management of Data,
Philadelphia Pennsylvania, USA, pages 49-60, 1999.
[5] D. Barbara, N. Wu and S. Jajodia, “Detecting Novel Network Intrusion
using Bayes Estimators.” Proceedings of the First SIAM Conference on
Data Mining, Chicago, Illions, April 2001.
[6] A. Ben-Dor and Z. Yakhini, “Clustering Gene Expression Patterns.“
Proceedings of the 3rd Annual International Conference on Computational
Molecular Biology, Lyon ,France, 1999.
[7] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature Deduction and
Ensemble Design of Intrusion Detection Systems” Computers and Security,
2004.
[8] S. Cherednichenko, “Outlier Detection in Clustering.” Master’s
Thesis, University of Joensuu Department of Computer Science, 2005.
[9] P. Cjeeseman and J. Stutz, “Bayesian Classification (AutoClass): Theory
and Results.” Advances in Knowledge Discovery and Data Mining, pages
153-180, Cambridge, MA, AAAI/MIT Press, 1996.
[10] D. Denning, “An Intrusion Detection Model.” IEEE Transactions on
Software Engineering, Vol. SE-13, pages 222-232, 1987.
[11] C. Dowell and P. Ramstedt, “The Computerwatch Data Reduction Tool.”
Proceedings of the 13th National Computer Security Conference,
Washington, D.C., 1990.
[12] D. Engelhardt, “Directions for Intrusion Detection and Response: A
Survey.”Australia Technical Report DSTO-GD-0155, Electronics and
Surveillance Research Laboratory, Department of Defense, 1997.
[13] L. Ertoz, E. Eilertson, P. Dokas, V. Kumar, and K. Long, “Scan
Detection Revisited.” Army High Performance Computing Research Center
Technical Report, 2004.
[14] E. Eskin, “Anomaly Detection over Noisy Data using Learned Probability
Distributions.”Proceedings of the International Conference on Machine
Learning , Stanford University, CA, June 2000.
[15] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A Geometric
Framework for Unsupervised Anomaly Detection: Detecting Intrusions in
Unlabeled Data.” Applications of Data Mining in Computer Security,
Advances In Information Security, S. Jajodia D. Barbara, Ed. Boston:
Kluwer Academic Publishers, 2002.
[16] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, ”A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise.” Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining, pages 226-231, Portland, Oregon, 1996
[17] D. Fisher, “Improving Inference Through Conceptual Clustering.”
Proceedings of 1987 AAAI Conference, pages 461-465, Seattle, Washington,
1987.
[18] J. H. Gennari, P. Langley, and D. Fisher, “Models of Incremental
Concept Formation.” Artificial Intelligence, Vol. 40, pages 11-61, 1989.
[19] A. Ghosh and A. Schwartzbard, “A Study in Using Neural Networks for
Anomaly and Misuse Detection.” Proceedings of the Eighth USENIX
Security Symposium, Washington, D.C., 141-151, August , 1999.
[20] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering
Algorithm For Large Databases.” Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 73-84, New York, 1998.
[21] S. Guha, R. Rastogi, and K. Shim, ”ROCK: A Robust Clustering Algorithm
For Categorical Attributes.” Proceedings of the 15th International
Conference on Data Engineering, 1999.
[22] J. Han and M. Kamber, “Data Mining:Concepts and Techniques.” Morgan
Kaufmann Publishers, 2000.
[23] A. Hinneburg and D. A. Keim, “An Efficient Approach to Clustering in
Multimedia Databases with Noise.” Proceedings of 4th International
Conference on Knowledge Discovery and Data Mining, New York, AAAI Press,
1998.
[24] A. K. Jain and R. C. Dubes, “Algorithms for Clustering Data.” Prentice
Hall, 1988.
[25] G. Karypis, E. H. Han, and V. Kumar, “CHAMELEON: Hierarchical
Clustering using Dynamic Modeling.” Technical Report TR-99-120,
Department of Computer Science, University of Minnesota,
Minneapolis,1999.
[26] L. Kaufman and P. J. Rousseeuw, “Finding Groups in Data: An
Introduction to Cluster Analysis.” John Wiely & Sons, 1990.
[27] T. Kohonen, “The Self-Organizing Map.“ Proceedings of the IEEE, Vol.
78, No. 9, pages 1464-1480, 1990.
[28] C. Krugel , T. Toth, and E. Kirda, “Service Specific Anomaly Detection
for Network Intrusion Detection.” Proceedings of the ACM Symposium on
Applied Computing, Madrid, Spain, March 2002.
[29] T. Lane and C. Brodley, “Temporal Sequence Learning and Data Reduction
for Anomaly Detection.” ACM Transactions on Information and System
Security, vol. 2,3, pages 295-331, 1999.
[30] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava, V. Kumar, “A
Comparative Study of Anomaly Detection Schemes in Network Intrusion
Detection.” Proceedings of the 3rd SIAM Conference on Data Mining, 2003.
[31] W. Lee, S. Stolfo, and K. Mok, “A Data Mining Framework for Building
Intrusion Detection Models.” Proceedings of the 1999 IEEE Symposium on
Security and Privacy, pages 120-132, 1999.
[32] W. Lee and D. Xinag, ”Information-Theoretic Measures for Anomaly
Detection” Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 2001.
[33] G. Liepins and H. Vaccaro, “Intrusion Detection: It’s Role and
Validation.” Computers and Security , pages 347-355, 1992.
[34] M. Mahoney and P. Chan, “Learning Nonstationary Models of Normal
Network Traffic for Detecting Novel Attacks.” Proceedings of the Eight
ACM International Conference on Knowledge Discovery and Data Mining,
Edmonton, Canada, July 2002.
[35] H. H. McAdams and L. Shapiro, “Circuit Simulation of Genetic
Networks.” Science 269, 650-656, 1995.
[36] J. B. McQueen, “Some Methods of Classification and Analysis of
Multivariate Observations.” Proceedings of the 5th Berkeley Symposium
on Mathematical Statistics and Probability, pages 281-297, 1967.
[37] H. Muhammad and K. C. Philip, “Identifying Outliers via Clustering for
Anomaly Detection.” Technical Report, Florida Institute of Technology
Melbourne, 2003.
[38] S. Mukkamala and A. H. Sung, “Identifying Significant Features for
Network Forensic Analysis Using Artificial Intelligent Techniques.”
International Journal of Digital Evidence, Vol. 1, 2003.
[39] S. Mukkamala and A. H. Sung, “Identifying Important Features for
Intrusion Detection Using Support Vector Machines and Neural Networks.”
Proceedings of International Symposium on Applications and the Internet
(SAINT), 2003.
[40] R. T. Ng and J. Han, “ Efficient and Effective Clustering Methods for
Spatial Data Mining.” Proceedings of the 20th VLDB Conference, pages
144-155, Santiago, Chile, 1994.
[41] L. Portnoy, E. Eskin , and S. Stolfo, “Intrusion Detection with
Unlabeled Data Using Clustering.”, ACM Workshop on Data Mining Applied
to Security, 2001.
[42] E. Schikuta, “Grid Clustering: An Efficient Hierarchical Clustering
Method for Very Large Data Sets.” Proceedings of 13th International
Conference on Pattern Recognition, 1996.
[43] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S.Zhou ” Specification Based Anomaly Detection: A New Approach for
Detecting Network Intrusions” Proceedings of the ACM Conference on
Computer and Communications Security (CCS), Washington, D.C., November
2002.
[44] G.. Sheikholeslami, S. Chatterjee, and A. Zhand, “WaveCluster: A Multi-
Resolution Clustering Approach for Very Large Spatial Databases.”
Proceedings of the 24th Very Large Databases Conference (VLDB 98),pages
428-439, New York, 1998.
[45] D. Wagner and D. Dean, “Intrusion Detection via Static Analysis.”
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA,
May 2001.
[46] W. Wang, J. Yang, and R. Muntz, “STING: A Statistical Information Grid
Approach to Spatial Data Mining.” Proceedings of 23rd International
Conference on Very Large Data Bases (VLDB 97), pages 186-195.1997.
[47] A. Wespi, M. Dacier, and H. Debar, “Intrusion Detection using Variable
Length Audit Trail Patterns.” Proceedings of the Recent Advances in
Intrusion Detection (RAID-2000), Toulouse, FR, 110-129, October 2000.
[48] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data
Clustering Method for Very Large Databases.” Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, pages 103-
114, Montreal, Canada, 1996.
[49] S. Zhong, T. M. Khoshgoftar, and N. Seliya, “Evaluating Clustering
Techniques for Network Intrusion Detection.” In 10th ISSAT Int. Conf.
on Reliability and Quality Design, pages 149-155, Las Vegas, Nevada,
USA. August 2004
[50] KDD Cup 1999 Data
(http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html)
[51] 高慶斌,應用於基因表現探勘之高效率叢集方法及其效能評估,碩士論文,國立成
功大學資訊工程研究所。
[52] 梁鐵柱,入侵檢測中的數據挖掘方法研究,博士論文,中國人民解放軍大學,2002.