簡易檢索 / 詳目顯示

研究生: 黃建霖
Huang, Chien-Lin
論文名稱: 對位聚苯乙烯/奈米碳管複材之流變、導電與結晶特性研究
Syndiotatctic Polystyrene Nanocomposites Filled with Carbon Nanotubes: Rheological, Conductive and Crystalline Properties
指導教授: 王紀
Wang, Chi
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 126
中文關鍵詞: 對位聚苯乙烯碳管碳球導電結晶穿晶長徑比
外文關鍵詞: syndiotactic polystyrene, carbon nanotubes, carbon nanocapsules, rheology, entanglement molecular weight, aspect ratio, electrical conductivity, percolation, threshold, transcrystallization, crystallization
相關次數: 點閱:118下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了解基材tacticity效應對流變性質的影響,本研究首先量測不同分子量對位聚苯乙烯(sPS, Mw=134-1160 kg/mol)在不同溫度下(270-310 oC)之動態流變性質,藉此可得糾結分子量(Me)與流動活化能(Ea),另研究四個不同分子量的亂排聚苯乙烯(aPS, Mw=215-862 kg/mol)與一個同位聚苯乙烯(iPS, Mw=247 kg/mol)來評估tacticity效應及其相關性質。以280 oC為參考溫度且依據時間-溫度重疊原理建立動態儲存模數與消散模數的精通曲線。藉由積分法,可得sPS與aPS的Me分別為14500與17900 g/mol,其值低於iPS藉由經驗方程式所得之Me (約為27200 g/mol)。按照Arrhenious曲線圖,可得sPS之Ea為53±5 kJ/mol,此值低於iPS與aPS之Ea(90-107 kJ/mol)。
    添加相同結構但不同長徑比的奈米碳管(CNT)與奈米碳球(CNC)進入半結晶性sPS基材中可形成均勻的奈米複材,以電子顯微鏡確認CNT與CNC在複材中的分散狀態。經由複材的流變與導電特性研究,了解添加物長徑比對於複材性質的影響。非晶相aPS亦添加入CNT,藉此研究基材tacticity效應。將percolation指數次方理論應用於此一研究中,並決定出複材不同特性之threshold濃度與percolation指數次方,研究發現複材流變與導電度分別遵循不同的精通曲線。藉由廣角X光繞射、傅立葉轉換紅外線光譜儀、微差熱掃描卡計和穿透式電子顯微鏡探討添加物對sPS結晶行為的影響。
    實驗發現長徑比較大的奈米碳材對於sPS複材不論是在流變或導電上,皆可以在較低濃度形成網狀結構;且複材的流變threshold遠小於導電threshold。由於sPS/CNT複材具有穿晶效應,使得sPS/CNT複材之導電threshold比aPS/CNT複材高出四倍之多。因CNT對於半結晶高分子基材有高成核能力,使sPS複材熔體經由液態氮淬冷後仍有晶體存在;然而進一步在升溫冷結晶過程中,sPS晶體成長卻以晶型為主,不受晶體存在影響。在熔融結晶條件下,複材內添加入CNT(或者CNC),容易形成sPS之晶型;且不論是動態結晶或等溫結晶,添加CNT與CNC會使得sPS整體結晶速率變快。逐步增加CNT含量,sPS的結晶速率先上升後達到一穩定值,這是由於高濃度CNT的添加使得高分子鏈運動度降低。Avrami指數在低CNT含量時為2.8,當CNT濃度達到流變threshold形成高分子-CNT混成網路結構時,Avrami指數轉變成2.0。藉由TEM的觀察,複材結晶變快機制是由於CNT的高成核性,使得sPS在CNT表面結晶,進而形成穿晶層。

    To reveal the tacticity effect of matrix on viscoelastic properties, attention is focused on the viscoelastic properties of syndiotactic polystyrene (sPS) with different molecular weights (Mw=134-1160 kg/mol) measured in a wide achievable temperature range (270-310 oC) to determine the entanglement molecular weight (Me), and flow activation energy (Ea). In addition, four atactic polystyrene (aPS, Mw=215-862 kg/mol) and one isotactic polystyrene (iPS, Mw=247 kg/mol) are also studied. Using a reference temperature of 280 oC, the master curves of dynamic storage and loss modulus are constructed according to the time-temperature superposition principle. Based on the classical integration method, the Me values are detemined to be 14500 and 17900 g/mol for the sPS and aPS, respectively, which are significantly lower than that for the iPS, ~27200 g/mol, derived form the Wu’s empirical equation. According to the Arrhenius plots, the determined Ea for the sPS is 53±5 kJ/mol, which is apparently lower than that for the other two isomers possessing a similar value of 90-107 kJ/mol.
    Semicrystalline sPS composites with carbon nanotubes (CNTs) and carbon nanocapsules (CNCs) are prepared and good filler dispersion is confirmed by electron microscopy. Their rheological and electrical properties are investigated to reveal the effect of filler aspect ratio. Amorphous aPS is also used to prepare composites filled with CNTs to elucidate the effect of matrix tacticity. Percolation scaling laws are applied and the threshold concentration and exponent are determined. Master curves are obtained provided that an appropriate percolation function is selected. In addition, the filler effect on the crystallization of sPS is studied as well using Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry, and transmission electron microscopy (TEM).
    Results show that a lower CNT content is found than the CNC filler to reach the percolation, either in the rheology or in the conductivity, due to the possession of a higher aspect ratio. Due to the transcrystallization effect in the sPS composites, its conductivity threshold is four time larger than that of CNT-filled aPS composites. Composites melt-quenched by liquid nitrogen contain the -form crystals because of the high nucleating ability of CNTs; however, subsequent cold crystallization produces the -form crystal despite the presence of the -form. When crystallized from the melted state, however, the formation of the -form is always favored after CNT (or CNC) addition regardless of crystallization conditions (isothermal or non-isothermal). With a gradual increase in CNT loading, the sPS crystallization initially increases but then reaches a plateau value at high CNT concentrations because of the reduction in chain mobility. Moreover, the Avrami exponent is changed from 2.8 for samples at low filler contents to 2.0 for samples, in which the rheological threshold is approached and polymer-CNT hybrid network is formed. The enhanced crystallization kinetics is attributed to the high nucleating ability of CNTs to induce a transcrystalline layer at its surface, as revealed by TEM.

    Contents Abstract I Acknowledgments V Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction and paper review 1 Chapter 2 Experimental section 8 2.1. Materials 8 2.2. Synthesis of sPS samples 8 2.3. Composite preparation 9 2.4. sPS/CNT ultrathin film samples 10 2.5. GPC measurements 10 2.6. Rheological measurements 11 2.7. Electrical conductivity measurements 12 2.8. WAXD Measurements for crystal modification 12 2.9. DSC measurements for crystallization kinetics 12 2.10. FTIR measurements for crystal modification 13 2.11. PLM measurements for crystal growth rate 13 2.12. TEM and SEM Observations 14 2.13. 13C-NMR measurements 14 Chapter 3: Effect of tacticity on viscoelastic properties of PS 15 3.1. Determination of and Me 18 3.2. Activation energy for flow 30 3.3. Mw dependence of zero viscosity 33 3.4. Summary 38 Chapter 4 sPS composites filled with CNTs and CNCs: rheological, and electrical conductivity properties 39 4.1. Dynamic rheological properties of PS composites 43 4.2. Electrical conductivity properties of PS composites 58 4.3. Effect of matrix tacticity on the electrical percolation 65 4.4. Summary 70 Chapter 5 sPS composites filled with CNTs and CNCs: crystallization and morphological features 71 5.1. Filler effects on the crystal modification of sPS 71 5.2. Dynamic crystallization 76 5.3. Isothermal crystallization 92 5.4. Morphologies of sPS composites 105 5.5. Summary 114 Chapter 6 Conclusions 115 Reference 117 Appendix 124 List of Publication 125

    1. Paul DR, Robeson LM. Polymer 2008;49:3187.
    2. Moniruzzaman M, Winey KI. Macromolecules 2006;39:5194.
    3. Kim H, Abdala AA, Macosko CW. Macromolecules 2010;43:6515.
    4. Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Prog Polym Sci 2010;35:357.
    5. Hwang, GL. Japanese patent 2006-028013, 2006.
    6. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Nature 2006;442:282.
    7. Ramasubramaniam R, Chen J. Appl Phys Lett 2003; 83:2928.
    8. Han S, Yun Y, Park KW, Sung YE, Hyeon T. Adv Mater 2003;15:1922.
    9. Zeng H, Zhu L, Hao G, Sheng R. Carbon 1998;36:259.
    10. Liu TC, Li YY. Carbon 2006;44:2045.
    11. Bunde A, Havlin S. Fractals and disordereds. 2nd ed. New York: Springer; 1996. p. 27.
    12. Heaney MB. Phys Rev B 1995;52:12477.
    13. Garboczi EJ, Snyder KA, Douglas, JF, Thorpe MF. Phys Rev E 1995;52:819.
    14. Grossiord N, Loos J, Koning CE. J Mater Chem 2005;15:2349.
    15. Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA. Macromolecules 2007;40:7400.
    16. Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP. Polymer 2006;47:7740.
    17. Antonucci V, Faiella G, Giordano M, Nicolais L, Pepe G. Macromol Symp 2007;247:172.
    18. Kara S, Arda E, Dolastir F, Pekcan Ö. J Colloid Interface Sci 2010;344:395.
    19. Kota AK, Cipriano BH, Powell D, Raghavan SR, Bruck HA. Nanotechnology 2007;18:505705.
    20. Mathur RB, Pande S, Singh BP, Dhami TL. Polym Compos 2008;29:717.
    21. Grossiord N, Kivit PJJ, Loos J, Meuldijk J, Kyrylyuk AV, van der Schoot P, Koning CE. Polymer 2008;49:2866.
    22. Yu J, Lu K, Sourty E, Grossiord N, Koning CE, Loos J. Carbon 2007;45:2897.
    23. Andrews R, Jacques D, Minot M, Rantell T. Macromol Mater Eng 2002;287:395.
    24. Sun, G.; Chen, G.; Liu, Z.; Chen, M. Carbon 2010;48:1434.
    25. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D. Polymer 2004;45:8863.
    26. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI. Macromolecules 2004;37:9048.
    27. Zhang Q, Lippits DR, Rastogi S. Macromolecules 2006;39:658.
    28. McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn PJ. Polymer 2005;46:8222.
    29. Lee JI, Yang SB, Jung HT. Macromolecules 2009;42:8328.
    30. Lee SH, Kim MW, Kim SH, Youn JR. Euro Polym J 2008;44:1620.
    31. Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS. Compos Sci Technol 2003;63:1637.
    32. Zhang Q, Fang F, Zhao X, Li Y, Zhu M, Chen D. J Phys Chem B 2008;112:12606.
    33. Mitchell CA, Bahr JL, Arepalli S, Tour JM, Macromolecules 2002;35:8825.
    34. Cipiriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JK. Polymer 2007;48:6086.
    35. Vega JF, Martínez-Salazar J, Trujillo M, Arnal ML, Müller AJ, Bredeau, S, Dubois Ph. Macromolecules 2009;42:4719.
    36. Winter HH, Mours M. Adv Polym Sci 1997:134:165.
    37. Wu G, Zheng Q. J Polym Sci Polym Phys 2004;42:1199.
    38. Agari Y, Ueda A, Nagai S. J Appl Polym Sci 1994;52:1223.
    39. Haggenmueller R, Fischer JE, Winey KI. Macromolecules 2006;39:2964.
    40. Uehara H, Kato K, Kakiage M, Yamanobe T, Komoto T. J Phys Chem C 2007;111:18950.
    41. Li L, Li CY, Ni C. J Am Chem Soc 2006;128:1692.
    42. Trujillo M, Arnal ML, Müller AJ, Laredo E, Bredeau St, Bonduel D, Dubois Ph. Macromolcules 2007;40:6268.
    43. Grady BP, Pompeo F, Shambaugh RL, Resasco DE. J Phys Chem B 2002;106:5852.
    44. Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE. Polymer 2003;44:2373.
    45. López Manchado MA, Valentini L, Biagiotti J, Kenny JM. Carbon 2005;43:1499.
    46. Xu D, Wang Z. Polymer 2008;49:330.
    47. Gorrasi G, Romeo V, Sannino D, Sarno M, Ciambelli P, Vittoria V, De Vivo B, Tucci V. Nanotechnology 2007;18:275703.
    48. Zhang S, Minus ML, Zhu L, Wong CP, Kumar S. Polymer 2008;49:1356.
    49. Lu K, Grossiord N, Koning CE, Miltner HE, van Mele B, Loos J. Macromolecules 2008;41:8081.
    50. Cimmion S, Pace ED, Martuscelli E, Silvestre C. Polymer 1991;32:1080.
    51. Wang C, Lin CC, Tseng LC. Polymer 2006;47:390.
    52. Wunderlich B. Macromolecular Physics, vol. 1; Academic Press Inc.: New York; 1973. p. 388.
    53. Wang C, Hsu YC, Lo CF. Polymer 2001;42:8447.
    54. Woo EM, Sun YS, Yang CP. Prog Polym Sci 2001;26:945.
    55. Gowd EB, Tashiro K, Ramesh C. Prog Polym Sci 2009;34:280.
    56. Sorrentino A, Vertuccio L, Vittoria V. eXPRESS Polym Lett 2010;4:339.
    57. Onogi S, Masuda T, Kitagawa K. Macromolecules 1970;3:109.
    58. Pearson DS. Rubber Chem Technol 1987;60:439.
    59. Fetters LJ, Lohse DJ, Milner ST. Macromolecules 1999;32:6847.
    60. Wu J, Haddad TS, Kim GM, Mather PT. Macromolecules 2007;40:544.
    61. Yoshida J, Friedrich C. Macromolecules 2005;38:7164.
    62. Ferri D, Greco F. Macromolecules 2006;39:5931.
    63. Wu S. J Polym Sci Polym Phys 1989;27:723.
    64. Fuchs K, Friedrich Chr, Weese J, Macromolecules 1996;29:5893.
    65. Jones TD, Chaffin KA, Bates FS, Annis BK, Hagaman EW, Kim MH, Wignall, GD, Fan W, Waymounth R. Macromolecules 2002;35:5061.
    66. Eckstein A, Suhm J, Friedrich C, Maier RD, Sassmannshausen J, Bochmann M, Mülhaupt R. Macromolecules 1998;31:1355.
    67. Liu C, Yu J, He J, Liu W, Sun C, Jing Z. Macromolecules 2004;37:9279.
    68. Antoniadis SJ, Samara CT, Theodorou DN. Macromolecules 1999;32:8635.
    69. Madkour TM, Soldera A. Eur. polym. J. 2001;37:1105.
    70. Arrighi V, Batt-Coutrot D, Zhang C, Telling MTF, Triolo A. J Chem Phys 2003;119:1271.
    71. Brükner S, Allegra G, Corradini P. Macromolecules 2002;35:3928
    72. Eckstein A, Friedrich C, Lobbrecht A, Spitz R, Mülhaupt R. Acta Polym 1997;48:41.
    73. Wu S, Becherbauer R. Polym J 1992;24:1437.
    74. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A. Macromolecules 1994;27:4639.
    75. Nakaoki T, Kobayashi M. J Mol Struct 2003;655:343.
    76. Cotton JP, Decker D, Benoit H, Farnoux B, Higgons J, Jannink G, Ober R, Picot C, des Cloizeaux J. Macromolecules 1974;7:863.
    77. Guenet JM, Picot C. Macromolecules 1983;16:205.
    78. Stölken S, Ewen B, Kobayashi M, Nakaoki T. J Polym Sci Polym Phys 1994;32:881.
    79. Hsiao TJ, Tasi JC. J Polym Sci Polym Chem 2010;48:1960.
    80. Manfredi C, De Rosa C, Guerra G, Rapacciuolo M, Auriemma F, Corradini P. Macromol Chem Phys 1995;196:2795.
    81. Xu G, Chung TC. Macromolecules 1999;32:8689.
    82. De Rosa C, De Ballesteros OR, Di Gennaro M, Auriemma F. Polymer 2003;44:1861.
    83. Feil F, Harder S. Macromolecules 2003;36:3446.
    84. Ferry JD. Viscoelastic properties of polymers, 3rd ed.; John Wiley & Sons, New York; 1980.
    85. Sanchez I, Cho J. Polymer 1995;36:2929.
    86. Sorrentino A, Pantani R. Rheol Acta 2009;48:467.
    87. Utracki LA. Polymer 2005;46:11548.
    88. Pointeck J, Richter S, Zschoche S, Sahre K, Arndt KF. Acta Polym 1998;49:192.
    89. Fetters LJ, Lohse DJ, Graessley WW. J Polym Sci Polym Phys 1999;37:1023.
    90. Raju VR, Menezes EV, Marin G, Graessley WW. Macromolecules 1981;14:1668.
    91. Likhtman AE, Mcleish TCB. Macromolecules 2002;35:6332.
    92. Baumgaertel M, Schausberger A, Winter HH. Acta Polym 1990;28:400.
    93. Marvin RS, Oser HJ. J Res Natl Bur Stand 1962;66B:171.
    94. Oser HJ, Marvin RS. J Res Natl Bur Stand 1963;67B:87.
    95. Baumgaertel M, Derosa ME, Machado J, Masse M, Winter HH. Acta polym. 1992;31:75.
    96. Zirkel A, Urban V, Richter D, Fetter LJ, Huang JS, Kampann R, Hadjichristidis N. Macromolecules 1992;25:6148.
    97. Ballard DGH, Cheshire P, Longmann GW, Schelten J. Polymer 1978;19:379.
    98. Lomellini P. Polymer 1992;33:4983.
    99. Kulkarni MG, Mashelkar RA. Polymer 1981;22:867.
    100. Wang JS, Porter RS. Rheol Acta 1995;34:496
    101. Graessley WW. Viscoelasticity and flow in melts and concentrated solutions. In: Mark JE, editor. Physical properties of polymers, 3rd, Cambridge, U.K., 2004.
    102. Masuda T, Kitagawa K, Inoue T, Onogi S. Macromolecules 1970;3:116
    103. Grossiord N, Miltner HE, Loos J, Meuldijk J, Mele BV, Koning CE. Chem Mater 2007;19:3787.
    104. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H. Polymer 2004;45:739.
    105. If our data are exclusively considered for the regression analysis, the pre-factor and exponent are changed and the scaling form is expressed by . Thus, G'H becomes 0.89G'm, and the R2 coefficient of the regression is 0.922.
    106. Balberg I. Phys Rev Lett 1987;59:1305.
    107. McLachlan DS, Heiss WD, Chiteme C, Wu J. Phys Rev B 1998;58:13558.
    108. Lu W, Lin H, Chen G. J Polym Sci Polym Phys 2006;44:1846.
    109. Wignall GD, Mandelkern L, Edwards C, Glotin M. J Polym Sci Polym Phys 1982;20:245.
    110. Grady BP. Macromol Rapid Commum 2010;31:247.
    111. Wu HD, Wu ID, Chang FC. Macromolecules 2000;33:8915.
    112. Lu M, Zhou W, Mai K. Polymer 2006;47:1661.
    113. Guerra G, De Rosa C, Vitagliano VM, Petraccone V, Corradini P. J Polym Sci Polym Phys 1991;29:265
    114. Wu HD, Tseng CR, Chang FC. Macromolecules 2001;34:2992.
    115. Wang ZM, Chung TC, Gilman JW, Manias E. J Polym Sci Polym Phys 2003;41:3173.
    116. Woo EM, Wu FS. J Polym Sci Polym Phys 1998;36:2725.
    117. Chiu FC, Li MT. Polymer 2003;44:8013.
    118. Wang C, Wang ML, Fan YD. Macromol Chem Phys 2005;206:1791
    119. Wu TM, Hsu SF, Chien CF, Wu JY. Polym Sci Eng 2004;44:2288.
    120. Liu T, Petermann J, He C., Liu Z, Chung TS. Macromolecules 2001;34:4305.
    121. Liu T, Petermann J. Polymer 2001;42:6453.
    122. Xu H, Ince BS, Cebe P. J Polym Sci Polym Phys 2003;41:3026.
    123. Duan Y, Zhang J, Shen D, Yan S. Macromolecules 2003;36:4874.
    124. Lee Y, Porter RS. Macromolecules 1987;20:1336.
    125. Holdsworth P, Turner-Jones A. Polymer 1971;12:195.
    126. Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung YW, Chum S. Macromolecules 1999;32:6221.
    127. Wang C, Chu MC, Lin TL, Lai SM, Shih HH, Yang JC. Polymer 2001;42:1733.
    128. Hoffman JD, Weeks JJ. J Res Natl Bur Stand 1962;66A:13.
    129. Quan H, Li ZM, Yang MB, Huang R. Compos Sci Technol 2005;65:999.
    130. Hoffman JD, David GT, Lauritzen Jr JI. The rate of crystallization of linear polymers with chain folding. In: Hannay NB, editor. Treatise on solid-state chemistry, Vol. 3, Plenum Press, New York, 1976 p. 497.
    131. Li L, Li CY, Ni C, Rong L, Hsiao B. Polymer 2007;48:3452.
    132. Wang C, Liu FH, Huang WH. Polymer 2011;52:1326.
    133. Guerra G, Vitagliano VM, De Rosa C, Petraccone V, Corradina P. Macromolecules 1990;23:1539.
    134. Höcker H, Blake GJ, Flory PJ. Trans Faraday Soc 1971;67:2251.
    135. Ngai KL, Plazek DJ. J Polym Sci Polym Phys 1985;23:2159.
    136. Hasan T, Ioku A, Nishii K, Shiono T, Ikeda T. Macromolecules 2001;34:3142.

    下載圖示 校內:2013-06-30公開
    校外:2013-06-30公開
    QR CODE