簡易檢索 / 詳目顯示

研究生: 陳盈豪
Chen, Ying-Hao
論文名稱: 轉換介質的聲波解析與數值模擬
Analysis and numerical simulation of acoustic waves in transformation media
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 轉換聲學異向性材料
外文關鍵詞: Transformation acoustics, Anisotropic material
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,許多學者對於轉換光學的研究,不論是理論上的解析或是實驗上的實證,都有已經有一定的成果。因此去思考在現實生活中,除了光學對於人們的影響很大以外,還有什麼是與人們息息相關的呢!?我們發現聲音與人的關係,是有很大的空間可以去做更進一步的研究,不管是惱人的噪音、還是動人的歌聲、更甚至於人耳所不及的音頻,對我們的影響也是相當大的。
      而最先開啟轉換聲學這塊領域的是Milton 的研究團隊,在2006年發表研究成果在New J. Phys.的期刊上。其中有引用到一個概念,如果方程式在座標轉換後會保持不變,及可以利用此特性去設計出適當的材料參數,來達到控制波傳遞的路徑,也因這個概念開啟了另一個新興領域-轉換聲學(transformation acoustic) 。所以本論文主要探討的為聲波的基本概念,以及異向性材料的邊界值問題,除此之外,也利用轉換聲學,去設計出不同的轉換裝置,並以數值模擬去展示各種裝置的可行性。

    Recently much achievements have been done on the research of transformation acoustic, including the analysis and the experimental verification. The first attempt of this line of research was done by Milton et al. in 2006, in which they addressed the concept of transformation acoustic, showing that the acoustic wave equation remains invariant under coordinate transformation. Upon selection of proper material parameters, it was demonstrated that the wave propagation path can be controlled arbitrarily. In this study, a specific mapping function will be introduced to achieve invisibility cloaking in acoustic waves. Various wave manipulation strategies such as the concentrator and rotation coating can be easily derived by the transformation media concept. In addition, numerical simulations with COMSOL will be introduced to show the feasibility of different devices.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 V 圖目錄 VI 第一章 緒論 1 1.1文獻回顧與相關研究 1 1.2論文內容簡介 4 第二章 聲波基本理論 6 2.1聲波介紹 9 2.2材料介紹 14 第三章 二維聲波圓柱分析與解析 15 3.1單層圓柱在無限域下的聲波解析 15 3.2 雙層異向性圓柱在無限域下的聲波解析 19 3.3 圓柱隱形斗篷的聲波解析 22 第四章 三維聲波球分析與解析 26 4.1 單層球體在無限域的聲波解析 26 4.2 雙層異向性球體在無限域的聲波解析 31 4.3 球體隱形斗篷的聲波解析 34 第五章 聲場下的轉換裝置 39 5.1聲波方程式的不變性 39 5.2不同轉換裝置的介紹 40 5.3計算材料係數與數值模擬 44 第六章 結論與未來展望 58 參考文獻 60 附錄A:方程式的不變性 65 附錄B:座標轉換 67 附錄C:數值模擬軟體介紹 69 附錄D:Associated Legendre方程式 71 附錄E:Bessel方程式 72

    Abramowitz, M., and Stegun, I., Handbook of Mathematical Functions, (Dover, New York, 1965).

    Assi, H., Acoustic Metamaterials: Theory and Potential Applications, JEB1433 (2010).

    Cai, L.-W., Scattering of antiplane shear waves by layered circular elastic cylinder, J. Acoust. Soc. Am. 115, 515-522 (2004a).

    Cai, L.-W., Multiple scattering in single scatterer, J. Acoust. Soc. Am. 115, 986-995 (2004b).

    Cai, L.-W. and Sánchez-Dehesa, J., Acoustical scattering by radially stratified scatterers, J. Acoust. Soc. Am. 124(5), 2715-2726 (2008).

    Cai, L.-W. and Sánchez-Dehesa, J., Analysis of Cummer-Schurig acoustic cloaking, New J. Phys. 9, 450 (2007).

    Chan, C.T., Li, J. and Fung, K.H., On extending the concept of double negativity to acoustic waves, J. Zhejiang Univ. Sci. A 7(1), 24-28 (2006).

    Chang, Z., Hu, J. and Hu, G.-K., Transformation method and wave control, Acta. Mech. Sin. 26, 889-898 (2010).

    Chen, H. and Chan, C. T., Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett. 91 (18), 183518 (2007a).

    Chen, H. and Chan, C. T., Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90(24), 241105 (2007b).

    Chen, H. and Chan, C. T., Acoustic cloaking and transformation acoustics, J. Phys. D: Appl. Phys. 43, 113001 (2010).

    Chen, H., Wu, B.-I., Zhang, B. and Kong, J. A., Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett. 99, 063903 (2007).

    Chen, H.-Y., Yang, T., Luo, X.-D. and Ma, H.-R., Impedance-matched reduced acoustic cloaking with realizable mass and its layered design, Chin. Phys. Lett. 25, 3696-3699 (2008).

    Chen, T., Cheng, S. W. and Weng, C. N., Equivalent configurations of optical transformation media, Opt. Express 17 (23), 21326 (2009).

    Cheng, Y. and Liu, X. J., Specific multiple-scattering process in acoustic cloak with multilayered homogeneous isotropic materials, J. Appl. Phys. 104, 104911 (2008).

    Cheng, Y. and Liu, X. J., Three dimensional multilayered acoustic cloak with homogeneous isotropic materials, Appl. Phys. A 94, 25-30 (2009).

    Chew, W. C., Waves and Fields in Inhomogeneous Media. (New York: IEEE Press, 1995).

    Cummer, S.A., and Schurig, D., One path to acoustic cloaking, New J. Phys. 9, 45 (2007).

    Cummer, S. A., Popa, B-I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M. and Starr, A., Scattering Theory Derivation of a 3D Acoustic Cloaking Shell, Phys. Rev. Lett.
    100, 024301 (2008).

    Cummer, S. A., Rahm, M. and Schurig, D., Material parameters and vector scaling in transformation acoustics, New J. Phys. 10, 115025 (2008).

    Dupont, G., Farhat, M., Diatta, A., Guenneau, S. and Enoch, S., Numerical Analysis of Three-dimensional Acoustic Cloaks and Carpets, arXiv:1103.1081 (2011).

    Lai, W. M., Rubin, D. and Krempl, E., Introduction to Continuum Mechanics, third ed., (Butterworth, Heinemann, Burlington, 1995).

    Leonhardt, U., Optical conformal mapping, Science 312 (5781), 1777 (2006).

    Liu, Z., Chan, C. T. and Sheng, P., Analytic model of phononic crystals with local resonances, Phys. Rev. B (Solid state) 71, 014103 (2005).

    Luo, Y., Chen, H., Zhang, J., Ran, L. and Kong, J. A., Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations, Phys. Rev. B 77 (12), 125127 (2008).

    Milton, G. W., Briane, M. and Willis, J. R., On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8, 248 (2006).

    Morse, P. M. and Ingard, K. U., Theoretical Acoustics. (Princeton, N.J.: Princeton University Press, 1986).

    Norris, A. N., Acoustic cloaking in 2D and 3D using finite mass, arXiv:physics/0802. 0701 (2008).

    Norris, A. N., Acoustic cloaking theory, Proc. R. Soc. A 464, 2411-2434 (2008).

    Pao, Y.-H., and Mow, C.-C., Diffraction of Elastic Waves and Dynamic Stress Concentrations. (Crane Russak, New York, 1971).

    Pendry, J. B., Schurig, D. and Smith, D. R., Controlling electromagnetic fields, Science 312, 1780 (2006).

    Pierce, A. D., Acoustics :An Introduction to Its Physical Principles and Applications, (Woodbury, N.Y.: Acoustical Society of America, 1989).

    Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R. and Pendry, J. B., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transfromations of Maxwell’s equations, Photonics and Nanostructures – Fundamentals and Applications 6, 87 (2008).

    Schurig, D., Pendry, J. B. and Simth, D. R., Calculation of material properties and ray tracing in transformation media, Optics Express 14(21), 9794 (2006).

    Sheng, P., Zhang, X. X., Liu, Z. and Chan, C. T., Locally resonant sonic materials, Physica B: Condens. Matter 338, 201–5 (2003).

    Sheng, P., Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, (San Diego: Academic Press, 1995).

    Sklan, S., Cloaking of the momentum in acoustic waves, Phys. Rev. E 81, 016606 (2010).

    Torrent, D. and Sánchez-Dehesa, J., Acoustic cloaking in two dimensions: a feasible approach, New J. Phys. 10, 063015 (2008).

    Torrent, D. and Sánchez-Dehesa, J., Acoustic metamaterials for new two-dimensional sonic devices, New J. Phys. 9, 323 (2007).

    Torrent, D. and Sánchez-Dehesa, J., Anisotropic mass density by two-dimensional acoustic metamaterials, New J. Phys. 10, 023004 (2008).

    Torrent, D. and Sánchez-Dehesa, J., Sound scattering by anisotropic metafluids based on two-dimensional sonic crystals, Phys. Rev. B 79, 174104 (2009).

    Torrent, D. and Sánchez-Dehesa, J., RadialWave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves, Phys. Rev. Lett. 103, 064301 (2009).

    Veselago, V.G. and Narimanov, E. E., The left hand of brightness: Past, present and future of negative index materials. Nature Materials, 5(10), 759-762 (2006).

    Willis, J. R., The non-local influence of density variations in a composite, Int. J. Solids Struct. 21, 805–17 (1985).

    Wolfe, J. P., Imaging Phonons: Acoustic Wave Propagation in Solids, (Cambridge, U.K., Cambridge University Press, 1998).

    Yang, J.-J., Li, T.-H. and Huang, M., Transparent device with homogeneous material parameters, Appl. Phys. A 10.1007/s00339-011-6330-3 (2011).

    Zhou X. and Hu, G., Acoustic wave transparency for a multilayered sphere with acoustic metamaterials, Phys. Rev. E 75, 046606 (2007).

    Zhu, W., Ding, C. and Zhao, X., A numerical method for designing acoustic cloak with homogeneous metamaterials, Appl. Phys. Lett. 97, 131902 (2010).

    余尚儒, 電磁波假像裝置之模擬與設計, 國立成功大學土木所碩士論文(2010).

    翁崇寧, 轉換材料在不同物理與彈性問題之理論及等效行為探討, 國立成功
    大學土木所博士論文(2010).

    鄭盛文, 反斗蓬效應的理論解析與數值模擬, 國立成功大學土木所碩士論文
    (2009).

    蔡育霖, 電磁波在不同的形狀轉換材料的模擬, 國立成功大學土木所碩士論文
    (2009).

    欒丕綱, 陳啟昌, 光子晶體-從蝴蝶翅膀到奈米光子學, 五南圖書出版股份有限公司, (2005)

    下載圖示 校內:2012-08-22公開
    校外:2016-08-22公開
    QR CODE