| 研究生: |
陳盈豪 Chen, Ying-Hao |
|---|---|
| 論文名稱: |
轉換介質的聲波解析與數值模擬 Analysis and numerical simulation of acoustic waves in transformation media |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 轉換聲學 、異向性材料 |
| 外文關鍵詞: | Transformation acoustics, Anisotropic material |
| 相關次數: | 點閱:110 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,許多學者對於轉換光學的研究,不論是理論上的解析或是實驗上的實證,都有已經有一定的成果。因此去思考在現實生活中,除了光學對於人們的影響很大以外,還有什麼是與人們息息相關的呢!?我們發現聲音與人的關係,是有很大的空間可以去做更進一步的研究,不管是惱人的噪音、還是動人的歌聲、更甚至於人耳所不及的音頻,對我們的影響也是相當大的。
而最先開啟轉換聲學這塊領域的是Milton 的研究團隊,在2006年發表研究成果在New J. Phys.的期刊上。其中有引用到一個概念,如果方程式在座標轉換後會保持不變,及可以利用此特性去設計出適當的材料參數,來達到控制波傳遞的路徑,也因這個概念開啟了另一個新興領域-轉換聲學(transformation acoustic) 。所以本論文主要探討的為聲波的基本概念,以及異向性材料的邊界值問題,除此之外,也利用轉換聲學,去設計出不同的轉換裝置,並以數值模擬去展示各種裝置的可行性。
Recently much achievements have been done on the research of transformation acoustic, including the analysis and the experimental verification. The first attempt of this line of research was done by Milton et al. in 2006, in which they addressed the concept of transformation acoustic, showing that the acoustic wave equation remains invariant under coordinate transformation. Upon selection of proper material parameters, it was demonstrated that the wave propagation path can be controlled arbitrarily. In this study, a specific mapping function will be introduced to achieve invisibility cloaking in acoustic waves. Various wave manipulation strategies such as the concentrator and rotation coating can be easily derived by the transformation media concept. In addition, numerical simulations with COMSOL will be introduced to show the feasibility of different devices.
Abramowitz, M., and Stegun, I., Handbook of Mathematical Functions, (Dover, New York, 1965).
Assi, H., Acoustic Metamaterials: Theory and Potential Applications, JEB1433 (2010).
Cai, L.-W., Scattering of antiplane shear waves by layered circular elastic cylinder, J. Acoust. Soc. Am. 115, 515-522 (2004a).
Cai, L.-W., Multiple scattering in single scatterer, J. Acoust. Soc. Am. 115, 986-995 (2004b).
Cai, L.-W. and Sánchez-Dehesa, J., Acoustical scattering by radially stratified scatterers, J. Acoust. Soc. Am. 124(5), 2715-2726 (2008).
Cai, L.-W. and Sánchez-Dehesa, J., Analysis of Cummer-Schurig acoustic cloaking, New J. Phys. 9, 450 (2007).
Chan, C.T., Li, J. and Fung, K.H., On extending the concept of double negativity to acoustic waves, J. Zhejiang Univ. Sci. A 7(1), 24-28 (2006).
Chang, Z., Hu, J. and Hu, G.-K., Transformation method and wave control, Acta. Mech. Sin. 26, 889-898 (2010).
Chen, H. and Chan, C. T., Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett. 91 (18), 183518 (2007a).
Chen, H. and Chan, C. T., Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90(24), 241105 (2007b).
Chen, H. and Chan, C. T., Acoustic cloaking and transformation acoustics, J. Phys. D: Appl. Phys. 43, 113001 (2010).
Chen, H., Wu, B.-I., Zhang, B. and Kong, J. A., Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett. 99, 063903 (2007).
Chen, H.-Y., Yang, T., Luo, X.-D. and Ma, H.-R., Impedance-matched reduced acoustic cloaking with realizable mass and its layered design, Chin. Phys. Lett. 25, 3696-3699 (2008).
Chen, T., Cheng, S. W. and Weng, C. N., Equivalent configurations of optical transformation media, Opt. Express 17 (23), 21326 (2009).
Cheng, Y. and Liu, X. J., Specific multiple-scattering process in acoustic cloak with multilayered homogeneous isotropic materials, J. Appl. Phys. 104, 104911 (2008).
Cheng, Y. and Liu, X. J., Three dimensional multilayered acoustic cloak with homogeneous isotropic materials, Appl. Phys. A 94, 25-30 (2009).
Chew, W. C., Waves and Fields in Inhomogeneous Media. (New York: IEEE Press, 1995).
Cummer, S.A., and Schurig, D., One path to acoustic cloaking, New J. Phys. 9, 45 (2007).
Cummer, S. A., Popa, B-I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M. and Starr, A., Scattering Theory Derivation of a 3D Acoustic Cloaking Shell, Phys. Rev. Lett.
100, 024301 (2008).
Cummer, S. A., Rahm, M. and Schurig, D., Material parameters and vector scaling in transformation acoustics, New J. Phys. 10, 115025 (2008).
Dupont, G., Farhat, M., Diatta, A., Guenneau, S. and Enoch, S., Numerical Analysis of Three-dimensional Acoustic Cloaks and Carpets, arXiv:1103.1081 (2011).
Lai, W. M., Rubin, D. and Krempl, E., Introduction to Continuum Mechanics, third ed., (Butterworth, Heinemann, Burlington, 1995).
Leonhardt, U., Optical conformal mapping, Science 312 (5781), 1777 (2006).
Liu, Z., Chan, C. T. and Sheng, P., Analytic model of phononic crystals with local resonances, Phys. Rev. B (Solid state) 71, 014103 (2005).
Luo, Y., Chen, H., Zhang, J., Ran, L. and Kong, J. A., Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations, Phys. Rev. B 77 (12), 125127 (2008).
Milton, G. W., Briane, M. and Willis, J. R., On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8, 248 (2006).
Morse, P. M. and Ingard, K. U., Theoretical Acoustics. (Princeton, N.J.: Princeton University Press, 1986).
Norris, A. N., Acoustic cloaking in 2D and 3D using finite mass, arXiv:physics/0802. 0701 (2008).
Norris, A. N., Acoustic cloaking theory, Proc. R. Soc. A 464, 2411-2434 (2008).
Pao, Y.-H., and Mow, C.-C., Diffraction of Elastic Waves and Dynamic Stress Concentrations. (Crane Russak, New York, 1971).
Pendry, J. B., Schurig, D. and Smith, D. R., Controlling electromagnetic fields, Science 312, 1780 (2006).
Pierce, A. D., Acoustics :An Introduction to Its Physical Principles and Applications, (Woodbury, N.Y.: Acoustical Society of America, 1989).
Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R. and Pendry, J. B., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transfromations of Maxwell’s equations, Photonics and Nanostructures – Fundamentals and Applications 6, 87 (2008).
Schurig, D., Pendry, J. B. and Simth, D. R., Calculation of material properties and ray tracing in transformation media, Optics Express 14(21), 9794 (2006).
Sheng, P., Zhang, X. X., Liu, Z. and Chan, C. T., Locally resonant sonic materials, Physica B: Condens. Matter 338, 201–5 (2003).
Sheng, P., Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, (San Diego: Academic Press, 1995).
Sklan, S., Cloaking of the momentum in acoustic waves, Phys. Rev. E 81, 016606 (2010).
Torrent, D. and Sánchez-Dehesa, J., Acoustic cloaking in two dimensions: a feasible approach, New J. Phys. 10, 063015 (2008).
Torrent, D. and Sánchez-Dehesa, J., Acoustic metamaterials for new two-dimensional sonic devices, New J. Phys. 9, 323 (2007).
Torrent, D. and Sánchez-Dehesa, J., Anisotropic mass density by two-dimensional acoustic metamaterials, New J. Phys. 10, 023004 (2008).
Torrent, D. and Sánchez-Dehesa, J., Sound scattering by anisotropic metafluids based on two-dimensional sonic crystals, Phys. Rev. B 79, 174104 (2009).
Torrent, D. and Sánchez-Dehesa, J., RadialWave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves, Phys. Rev. Lett. 103, 064301 (2009).
Veselago, V.G. and Narimanov, E. E., The left hand of brightness: Past, present and future of negative index materials. Nature Materials, 5(10), 759-762 (2006).
Willis, J. R., The non-local influence of density variations in a composite, Int. J. Solids Struct. 21, 805–17 (1985).
Wolfe, J. P., Imaging Phonons: Acoustic Wave Propagation in Solids, (Cambridge, U.K., Cambridge University Press, 1998).
Yang, J.-J., Li, T.-H. and Huang, M., Transparent device with homogeneous material parameters, Appl. Phys. A 10.1007/s00339-011-6330-3 (2011).
Zhou X. and Hu, G., Acoustic wave transparency for a multilayered sphere with acoustic metamaterials, Phys. Rev. E 75, 046606 (2007).
Zhu, W., Ding, C. and Zhao, X., A numerical method for designing acoustic cloak with homogeneous metamaterials, Appl. Phys. Lett. 97, 131902 (2010).
余尚儒, 電磁波假像裝置之模擬與設計, 國立成功大學土木所碩士論文(2010).
翁崇寧, 轉換材料在不同物理與彈性問題之理論及等效行為探討, 國立成功
大學土木所博士論文(2010).
鄭盛文, 反斗蓬效應的理論解析與數值模擬, 國立成功大學土木所碩士論文
(2009).
蔡育霖, 電磁波在不同的形狀轉換材料的模擬, 國立成功大學土木所碩士論文
(2009).
欒丕綱, 陳啟昌, 光子晶體-從蝴蝶翅膀到奈米光子學, 五南圖書出版股份有限公司, (2005)