簡易檢索 / 詳目顯示

研究生: 段奕安
Tuan, Yi-An
論文名稱: 建成區型態特徵對熱舒適性影響之探討-以臺北都會區為例
A Study on the Impact of Urban and Settlement Morphology and Thermal Comfort: A Case Study of Taipei Metropolitan Area
指導教授: 鄭皓騰
Cheng, Hao-Teng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 128
中文關鍵詞: 建成區型態熱舒適性城鄉切面氣候變遷調適策略都會區
外文關鍵詞: Urban and Settlement Morphology, Thermal Comfort, The Rural-to- Urban Transect, Adaptation Strategy to Climate Change, Metropolitan Area
相關次數: 點閱:21下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對都市化與氣候變遷,增溫之範圍逐漸擴散至都會區,相關研究證實建成 型態特徵將影響都市微氣候,人體受到天氣因素之刺激下,可能影響熱舒適性, 造成健康與生活品質之衝擊, 提升熱舒適性與減緩策略成為現今重要的課題,若 能了解影響熱舒適性之建成型態特徵,便可以提出因應不同型態之調適策略以降 低高溫帶來的衝擊,藉此提升熱舒適性與建成環境之宜居性。
    本研究目的旨在探討建成區型態對熱舒適性之影響,以臺北都會區為實證地 區 ,並結合城鄉切面的概念, 評估熱舒適性與分析都會區不同建成區型態之特徵, 藉以探索不同建成區型態特徵與熱舒適性之關聯 。研究架構總共分為三個部分進 行:其一,藉由評估熱舒適性了解臺北都會區不同建成區型態特徵之熱舒適性; 其二,以多元逐步迴歸模型探討影響熱舒適性之建成型態特徵因子;其三,運用 迴歸分析比較不同城鄉型態區熱舒適性影響因素及其差異。
    根據操作結果,整體模式解釋能力?!達 0.115 ,自變數包含建蔽率(BCR)、 容 積率(FAR)、不透水表面積比率(ISR)、透空度(SVF)、縱橫比(H/W)皆與生理等效 溫度(PET)具有顯著正向關係,其中又以建蔽率為最主要且穩定的正向顯著變項, 顯示建築密度與都市熱環境高度關聯,常態化差異植生指數(NDVI)則為顯著負 向關係。分析結果顯示地表覆蓋以不透水鋪面為主,綠化程度低,並且建築密集 分布、開發量體較高的區域,易導致蓄存熱能卻難以散熱,增加地表與空氣溫度, 進而降低熱舒適性,此外,開放程度較高且缺乏遮蔭的區域,接受較多太陽輻射 量,也會影響人體熱舒適。
    藉由本研究探討建成區型態對熱舒適性之影響, 並分類城鄉建成型態區與局 部氣候區 , 以了解不同區域影響熱舒適性之關鍵建成區型態特徵,並顯示模式對 於都市地區具有較高解釋力。 未來我國政府欲透過增額容積機制落實都會區朝向 大眾運輸發展導向, 在未來將調適策略納入土地使用管制與都市設計準則下, 將 可能加劇熱島效應 , 反之同時成為改善熱環境並提升熱舒適性之機會 ,因此本研 究針對都市地區提出對不同局部氣候區之因應策略 ,其一, 透過前院深度之管制 規則,引導改善街道熱環境;其二,改善建築設計與配置保留風廊道並減少熱能 積蓄;其三,增加綠化空間以進行降溫,提升熱舒適性。

    Amid rapid urbanization and the intensifying impacts of climate change, warming has progressively expanded into metropolitan areas. When individuals are exposed to adverse weather conditions, thermal comfort can be compromised, with potential consequences for health and quality of life. Understanding how urban and settlement morphology influences thermal comfort is therefore essential for developing adaptation strategies tailored to different urban forms, mitigating high-temperature impacts, and ultimately enhancing both thermal comfort and the livability of built environments.
    This study investigates the influence of urban and settlement morphology on thermal comfort, with a specific focus on the Taipei Metropolitan Area. The research framework comprises three components: first, assessing thermal comfort to capture spatial variations across diverse built environment patterns; second, employing multiple stepwise regression models to identify the morphological factors most strongly associated with thermal comfort; and third, applying regression analysis to compare the determinants of thermal comfort across distinct urban and settlement morphologies and to examine their differences.
    The results indicate that the building coverage ratio (BCR) is the most prominent and consistently significant positive predictor, underscoring the strong association between building density and the urban thermal environment. In contrast, the normalized difference vegetation index (NDVI) shows a significant negative relationship with physiological equivalent temperature (PET). Areas characterized by dense building clusters and higher development intensity tend to retain heat and inhibit its dissipation, resulting in elevated surface and air temperatures and diminished thermal comfort. Furthermore, environments with greater openness and insufficient shading receive higher levels of solar radiation, which also exacerbates thermal discomfort.

    第一章 緒論1 第一節 研究動機與目的1 第二節 研究範疇4 第三節 名詞定義與解釋5 第四節 研究內容與流程6 第二章 文獻回顧8 第一節 建成區型態與城鄉切面8 第二節 建成區型態與熱環境相關議題13 第三節 城鄉熱舒適性 17 第三章 研究設計22 第一節 研究內容與架構22 第二節 建成區型態特徵分析27 第三節 建成區熱舒適性評估31 第四節 影響熱舒適性建成型態特徵因子之探討35 第五節 不同建成區型態特徵影響之比較40 第六節 研究資料說明43 第七節 TOD 導向發展與調適策略運用51 第四章 實證分析56 第一節 建成區型態特徵分析56 第二節 建成區熱舒適性評估63 第三節 影響熱舒適性建成區型態特徵因子之探討66 第四節 不同建成區型態特徵影響之比較76 第五節 都會區調適策略之研擬85 第五章 結論與建議98 第一節 研究結論 98 第二節 研究建議100 參考文獻102

    尤思喻、林子平(2023)。臺灣淨零排放與都市高溫挑戰--氣溫降低與熱舒適提升之調適與實踐。建築學報,125(低碳建築專刊) 2023.12[民112.12],103-113。https://doi.org/10.53106/101632122023120125012
    方瀅喬(2009)。都市公園微氣候對使用者熱舒適度影響之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.01821
    石婉瑜、Leslie Mabon(2018)。臺北盆地的熱環境特徵與都市綠色基盤的影響。都市與計劃,45(4),283-300。https://doi.org/10.6128/CP.201812_45(4).0002
    吳明隆. (2013). SPSS統計應用學習實務:問卷分析與應用統計. 易習圖書。
    李家儂(2006)。交通運輸與土地使用整合規劃之演變:大眾運輸導向發展的都市發展模式。土地問題研究季刊, 5(3), 70–83。https://doi.org/10.29604/BGYY.200609.0008
    李家儂、賴宗裕(2007)。臺北都會區大眾運輸導向發展目標體系與策略之建構。地理學報,(48),19-42。https://doi.org/10.6161/jgs.2007.48.02
    於幼華(主編)。(2002)。環境科學大辭典。文景書局。
    林子平、蔡沛淇、歐星妤、張洲滄(2023)。熱島效應緩解策略之風廊系統的指認與應用。土木水利,50(1),24-29。https://doi.org/10.6653/MoCICHE.202302_50(1).0005
    林楨家、高誌謙(2003)。用於捷運車站周邊地區容積管制檢討之TOD規劃模式。運輸計劃季刊,32(3),581-600。https://doi.org/10.6402/TPJ.200309.0581
    孫振義(2017)。熱季街道環境與熱舒適性關係之研究。都市與計劃,44(4),375-397。https://doi.org/10.6128/CP.44.4.375
    徐國城(2000)。台北都會區空間發展型態變遷趨勢與原因之研究。﹝博士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/uy5g3f。
    陳正昌、林曉芳(2024)。R 統計軟體與多變量分析:含 JASP 與 jamovi(第 2 版)。五南圖書出版公司。
    陳慶融、邱英浩(2015)。植栽對戶外熱舒適之影響研究。建築學報,(92),43-60。https://doi.org/10.3966/101632122015060092003
    廖婧妤、邱英浩(2019)。以數值計算方法解析傳統園林建築之物理環境-以板橋林家花園為例。建築學報,(110),67-84。https://doi.org/10.3966/101632122019120110004
    劉小蘭、賴玫錡(2011)。都市化與氣候暖化關係之研究─以台北都會區為例。臺灣土地研究,14(2),39-66。https://doi.org/10.6677/JTLR.201111_14(2).0002
    黎益肇、方富民、張仕獻、張正興(2019)。運用CFD進行都市通風對行人熱舒適性之影響評估。中國土木水利工程學刊,31(8),731-738。https://doi.org/10.6652/JoCICHE.201912_31(8).0006
    賴宗裕、蘇偉強(2021)。大眾捷運車站周邊實施增額容積制度之探討。土地問題研究季刊,20(4),118-129。https://www.airitilibrary.com/Article/Detail?DocID=a0000011-202112-202112030006-202112030006-118-129
    賴湘文、邱英浩、高立新、王价巨(2016)。都市街廓特徵與人體熱舒適之關係研究。都市與計劃,43(1),89-114。https://doi.org/10.6128/CP.43.1.89
    謝俊民、劉怡欣、戴婷婷(2012)。人行步道空間的陰影連續性設計與熱舒適評價。都市與計劃,39(4),407-429。https://doi.org/10.6128/CP.39.4.407
    A. Matzarakis and H. Mayer, “Another Kind of Environmental Stress: Thermal Stress. WHO Collaborating Centre for Air Quality Management and Air Pollution Control,” NEWSLETTERS, Vol. 18, 1996, pp. 7-10.
    Abreu-Harbich, L. V., Labaki, L. C., & Matzarakis, A. (2014). Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theoretical and Applied Climatology, 115(1-2), 333-340. https://doi.org/10.1007/s00704-013-0886-0
    Adams, J. S. (2005). Hoyt, H. 1939: The structure and growth of residential neighborhoods in American cities. Washington, DC: Federal Housing Administration. Progress in Human Geography, 29(3), 321-325. https://doi.org/10.1191/0309132505ph552xx
    Ahern, J. (2011). From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landscape and Urban Planning, 100(4), 341-343. https://doi.org/https://doi.org/10.1016/j.landurbplan.2011.02.021
    Ahmed, N.M., Altamura, P., Giampaoletti, M. et al. Optimizing human thermal comfort and mitigating the urban heat island effect on public open spaces in Rome, Italy through sustainable design strategies. Sci Rep 14, 19931 (2024). https://doi.org/10.1038/s41598-024-65794-8
    Akansu, V., & Karaman, A. (2023). The Assessment of Greyfields in Relation to Urban Resilience within the Context of Transect Theory: Exemplar of Kyrenia-Arapkoy. Sustainability, 15(2), Article 1181. https://doi.org/10.3390/su15021181
    American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2009). ASHRAE handbook: Fundamentals (SI ed.). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
    Amini, H., Jabari, S., & McGrath, H. (2025). Assessing Future Changes in Mean Radiant Temperature: Considering Climate Change and Urban Development Impacts in Fredericton, New Brunswick, Canada, by 2050. Geohazards, 6(1), Article 10. https://doi.org/10.3390/geohazards6010010
    Andreou, E. (2013). Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable Energy, 55, 182-188. https://doi.org/https://doi.org/10.1016/j.renene.2012.12.040
    Andreou, E., & Axarli, K. (2012). Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renewable Energy, 43, 354-363. https://doi.org/https://doi.org/10.1016/j.renene.2011.11.038
    Andrews, C. J. (2008). Greenhouse gas emissions along the rural-urban gradient. Journal of Environmental Planning and Management, 51(6), 847-870. https://doi.org/10.1080/09640560802423780
    ASHRAE 55 (2004) ASHRAE Standard 55-2004. Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta.
    Auer, A. H. Jr. (1978). Correlation of land use and cover with meteorological anomalies. Journal of Applied Meteorology, 17(5), 636–643. https://doi.org/10.1175/1520-0450(1978)017<0636:COLUAC>2.0.CO;2
    Azhdari, A., Soltani, A., & Alidadi, M. (2018). Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city. Sustainable Cities and Society, 41, 853-864. https://doi.org/https://doi.org/10.1016/j.scs.2018.06.034
    Bakarman, M. A., & Chang, J. D. (2015). The influence of height/width ratio on urban heat island in hot-arid climates. Procedia Engineering, 118, 101–108. https://doi.org/10.1016/j.proeng.2015.08.408
    Balany, F., Ng, A. W. M., Muttil, N., Muthukumaran, S., & Wong, M. S. (2020). Green Infrastructure as an Urban Heat Island Mitigation Strategy-A Review. Water, 12(12), Article 3577. https://doi.org/10.3390/w12123577
    Banerjee, C., Saha, J., & Mohapatra, S. (2023). Evolution and growth of human settlements.
    Bengston, D. N., Fletcher, J. O., & Nelson, K. C. (2004). Public policies for managing urban growth and protecting open space: policy instruments and lessons learned in the United States. Landscape and Urban Planning, 69(2-3), 271-286.
    Boettcher, W. E. (1990). Carl Ritter's early geographic thought (1779-1817) (Doctoral dissertation, University College London). UCL Discovery.
    Bottema, M. (1997). Urban roughness modelling in relation to pollutant dispersion. Atmospheric Environment, 31(18), 3059-3075.
    Brunhes, J. (1910). Human geography: An attempt at a positive classification, principles and examples. Felix Alcan.
    Burgess, E. W. (1925). The growth of the city: An introduction to a research project. Publications of the American Sociological Society, 18, 85–97.
    Chandler, T. J. (1965). The Climate of London. Hutchinson.
    Cimini, A., De Fioravante, P., Riitano, N., Dichicco, P., Calò, A., Mugnozza, G. S., Marchetti, M., & Munafò, M. (2023). Land Consumption Dynamics and Urban-Rural Continuum Mapping in Italy for SDG 11.3.1 Indicator Assessment. Land, 12(1), Article 155. https://doi.org/10.3390/land12010155
    Clay G (2003) Crossing the American grain with Vesalius, Geddes, and Jackson: the cross section as a learning tool. In: Wilson C, Groth PE (eds) Everyday America: cultural landscape studies after JB Jackson. University of California Press, Berkeley, pp 109–129
    Coccolo, S., Pearlmutter, D., Kaempf, J., & Scartezzini, J. L. (2018). Thermal Comfort Maps to estimate the impact of urban greening on the outdoor human comfort. Urban Forestry & Urban Greening, 35, 91-105. https://doi.org/10.1016/j.ufug.2018.08.007
    Conzen, M.R.G. (1960). Alnwick, Northumberland: a study in town-plan analysis (Institute of British Geographers Publication 27). London: Georg Philip.
    Costa, I. T., Wollmann, C. A., Writzl, L., Iensse, A. C., da Silva, A. N., Baumhardt, O. D., Gobo, J. P. A., Shooshtarian, S., & Matzarakis, A. (2024). A Systematic Review on Human Thermal Comfort and Methodologies for Evaluating Urban Morphology in Outdoor Spaces. Climate, 12(3), Article 30. https://doi.org/10.3390/cli12030030
    Demuzere M, Bechtel B, Middel A, Mills G (2019) Mapping Europe into local climate zones. PLoS ONE 14(4): e0214474. https://doi.org/10.1371/journal.pone.0214474
    Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., & Bechtel, B. (2022). A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst. Sci. Data, 14(8), 3835-3873. https://doi.org/10.5194/essd-14-3835-2022
    Djongyang, N., Tchinda, R., & Njomo, D. (2010). Thermal comfort: A review paper. Renewable & Sustainable Energy Reviews, 14(9), 2626-2640. https://doi.org/10.1016/j.rser.2010.07.040
    Domińczak, M. (2020). Nowa Urbanistyka. In Metodyka i Zasady Projektowania Według SmartCode; Wydawnictwo Politechniki Łódzkiej: Łódź, Poland.
    Duany, A., & Talen, E. (2002). Transect Planning. Journal of the American Planning Association, 68(3), 245–266. https://doi.org/10.1080/01944360208976271
    Eisenman TS, Murray T (2017) An integral lens on Patrick Geddes. Landsc Urban Plan 166:43–54
    Ellefsen, R. (1991). Mapping and measuring buildings in the canopy boundary layer in ten US cities. Energy and Buildings, 16(1-2), 1021-1041. https://doi.org/10.1016/0378-7788(91)90097-M
    Fang, Z., Feng, X., Liu, J., Lin, Z., Mak, C. M., Niu, J., Tse, K.-T., & Xu, X. (2019). Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics. Sustainable Cities and Society, 44, 676-690. https://doi.org/https://doi.org/10.1016/j.scs.2018.10.022
    Feyisa, G. L., Dons, K., & Meilby, H. (2014). Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landscape and Urban Planning, 123, 87-95. https://doi.org/https://doi.org/10.1016/j.landurbplan.2013.12.008
    Gauthiez, B. (2004). The history of urban morphology. Urban Morphology, 8(2), 71-89. <Go to ISI>://WOS:000224397400002
    Geddes P (1923) The valley section from hills to sea. URL. habitat. aq. upm. es/boletin, New York City, p 45
    Han, S. (2021). The use of transects for resilient design: core theories and contemporary projects. Landscape Ecol 36, 1567–1582. https://doi.org/10.1007/s10980-020-01172-9
    Harris, C. D., & Ullman, E. L. (1945). The Nature of Cities. The Annals of the American Academy of Political and Social Science, 242, 7–17. http://www.jstor.org/stable/1026055
    He, X., Gao, W., & Wang, R. (2021). Impact of urban morphology on the microclimate around elementary schools: A case study from Japan. Building and Environment, 206, 108383. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108383
    Höppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43, 71–75. https://doi.org/10.1007/s004840050118
    Höppe, P. (2002). Different aspects of assessing indoor and outdoor thermal comfort. Energy and Buildings, 34(6), 661-665. https://doi.org/https://doi.org/10.1016/S0378-7788(02)00017-8
    Huang, C. H., Tsai, H. H., & Chen, H. C. (2020). Influence of Weather Factors on Thermal Comfort in Subtropical Urban Environments. Sustainability, 12(5), Article 2001. https://doi.org/10.3390/su12052001
    Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Mitigation of climate change: Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
    Jachimowicz, A. M. (2022). Morphology of Warsaw City Structure Using Urban Indexes and GIS Tools. Land, 11(1), Article 135. https://doi.org/10.3390/land11010135
    Jamei, E., Ossen, D. R., Seyedmahmoudian, M., Sandanayake, M., Stojcevski, A., & Horan, B. (2020). Urban design parameters for heat mitigation in tropics. Renewable and Sustainable Energy Reviews, 134, 110362. https://doi.org/https://doi.org/10.1016/j.rser.2020.110362
    Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 54, 1002-1017. https://doi.org/https://doi.org/10.1016/j.rser.2015.10.104
    Jani, D. M., Mohd, W. M. N. W., & Salleh, S. A. (2021). Effects of High-Rise Residential Building Shape and Height on the Urban Microclimate in a Tropical Region. IOP Conference Series: Earth and Environmental Science, 767(1), 012031. https://doi.org/10.1088/1755-1315/767/1/012031
    Kamal, A., Abidi, S. M. H., Mahfouz, A., Kadam, S., Rahman, A., Hassan, I. G., & Wang, L. L. (2021). Impact of urban morphology on urban microclimate and building energy loads. Energy and Buildings, 253, Article 111499. https://doi.org/10.1016/j.enbuild.2021.111499
    Kang, S., Lee, D., Park, J., & Jung, J. (2022). Exploring Urban Forms Vulnerable to Urban Heat Islands: A Multiscale Analysis. Sustainability, 14(6), 3603. https://www.mdpi.com/2071-1050/14/6/3603
    Keikhosravi, Q. (2019). The effect of heat waves on the intensification of the heat island of Iran's metropolises (Tehran, Mashhad, Tabriz, Ahvaz). Urban Climate, 28, 100453. https://doi.org/https://doi.org/10.1016/j.uclim.2019.100453
    Kong, F. H., Chen, J. Y., Middel, A., Yin, H. W., Li, M. C., Sun, T., Zhang, N., Huang, J., Liu, H. Q., Zhou, K. J., & Ma, J. S. (2022). Impact of 3-D urban landscape patterns on the outdoor thermal environment: A modelling study with SOLWEIG. Computers Environment and Urban Systems, 94, Article 101773. https://doi.org/10.1016/j.compenvurbsys.2022.101773
    Kotharkar, R., Ghosh, A., & Kotharkar, V. (2021). Estimating summertime heat stress in a tropical Indian city using Local Climate Zone (LCZ) framework. Urban Climate, 36, Article 100784. https://doi.org/10.1016/j.uclim.2021.100784
    Kristjánsdóttir, S. (2007). Deciphering the contemporary urban landscape of Reykjavík, Iceland, by applying the concepts and methods of Caniggia and Conzen. Unpublished PhD thesis, University of Birmingham.
    Kristjánsdóttir, S. (2019). Roots of Urban Morphology. Iconarp International Journal of Architecture and Planning, 7, 15-36. https://doi.org/10.15320/iconarp.2019.79
    La Rosa, D., & Li, J. X. (2023). High-Resolution Greening Scenarios for Urban Climate Regulation Based on Physical and Socio-Economical Factors. Sustainability, 15(9), Article 7678. https://doi.org/10.3390/su15097678
    Lamarca, C., Qüense, J., & Henríquez, C. (2018). Thermal comfort and urban canyons morphology in coastal temperate climate, Concepción, Chile. Urban Climate, 23, 159-172. https://doi.org/https://doi.org/10.1016/j.uclim.2016.10.004
    Lau, K. K. L., Chung, S. C., & Ren, C. (2019). Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment, 154, 227-238. https://doi.org/10.1016/j.buildenv.2019.03.005
    Li, B., Du, C., Tan, M., Liu, H., Essah, E., & Yao, R. (2018). A modified method of evaluating the impact of air humidity on human acceptable air temperatures in hot-humid environments. Energy and Buildings, 158, 393-405. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.09.062
    Lin, T.-P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 44(10), 2017-2026. https://doi.org/https://doi.org/10.1016/j.buildenv.2009.02.004
    Lin, Z., & Deng, S. (2008). A study on the thermal comfort in sleeping environments in the subtropics—Developing a thermal comfort model for sleeping environments. Building and Environment, 43(1), 70-81. https://doi.org/https://doi.org/10.1016/j.buildenv.2006.11.026
    Liu, B., Guo, X., & Jiang, J. (2023). How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study. Sustainability, 15(14), Article 10787. https://doi.org/10.3390/su151410787
    Liu, G. X., Lei, J., Qin, H. Q., Niu, J. Q., Chen, J. H., Lu, J., & Han, G. F. (2023). Impact of environmental comfort on urban vitality in small and medium-sized cities: A case study of Wuxi County in Chongqing, China. Frontiers in Public Health, 11, Article 1131630. https://doi.org/10.3389/fpubh.2023.1131630
    Liu, L., Lin, Y. Y., Xiao, Y., Xue, P. N., Shi, L. Y., Chen, X., & Liu, J. (2018). Quantitative effects of urban spatial characteristics on outdoor thermal comfort based on the LCZ scheme. Building and Environment, 143, 443-460. https://doi.org/10.1016/j.buildenv.2018.07.019
    Liu, Y., Li, Q., Yang, L., Mu, K., Zhang, M., & Liu, J. (2020). Urban heat island effects of various urban morphologies under regional climate conditions. Science of the Total Environment, 743, 140589. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140589
    Loridan, T., & Grimmond, C. S. B. (2012). Characterization of energy flux partitioning in urban environments: Links with surface seasonal properties. Journal of Applied Meteorology and Climatology, 51(2), 219–241. https://doi.org/10.1175/JAMC-D-11-038.1
    Lowry, W. P. (1977). Empirical Estimation of Urban Effects on Climate: A Problem Analysis. Journal of Applied Meteorology and Climatology, 16(2), 129-135. https://doi.org/10.1175/1520-0450(1977)016<0129:EEOUEO>2.0.CO;2
    Ma, X. T., Leung, T. M., Chau, C. K., & Yung, E. H. K. (2022). Analyzing the influence of urban morphological features on pedestrian thermal comfort. Urban Climate, 44, Article 101192. https://doi.org/10.1016/j.uclim.2022.101192
    Masson, V., Lemonsu, A., Hidalgo, J., & Voogt, J. (2020). Urban Climates and Climate Change. Annual Review of Environment and Resources, 45(1), 411-444. https://doi.org/10.1146/annurev-environ-012320-083623
    McHarg IL (1969) Design with Nature. American Museum of Natural History, New York
    Middel, A., Häb, K., Brazel, A. J., Martin, C. A., & Guhathakurta, S. (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16-28. https://doi.org/https://doi.org/10.1016/j.landurbplan.2013.11.004
    Mohammad Harmay, N. S., & Choi, M. (2022). Effects of heat waves on urban warming across different urban morphologies and climate zones. Building and Environment, 209, 108677. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108677
    Morel, A., Vidal-Beaudet, L., Brialix, L., Lemesle, D., Bulot, A., & Herpin, S. (2025). Evolution of microclimate following small patch de-sealing and revegetation in urban context. Urban Climate, 61, Article 102371. https://doi.org/10.1016/j.uclim.2025.102371
    Neuenschwander, N., Hayek, U. W., & Grêt-Regamey, A. (2014). Integrating an urban green space typology into procedural 3D visualization for collaborative planning. Computers Environment and Urban Systems, 48, 99-110. https://doi.org/10.1016/j.compenvurbsys.2014.07.010
    Noël, P. H., & Cai, X. (2017). On the role of individuals in models of coupled human and natural systems: Lessons from a case study in the Republican River Basin. Environmental Modelling & Software, 92, 1-16.
    Oke, T. R. (2004). Initial guidance to obtain representative meteorological observations at urban sites. Geneva: World Meteorological Organization.
    Oliveira, V. (2018). Teaching Urban Morphology Introduction. In V. Oliveira (Ed.), Teaching Urban Morphology (pp. 1-8). https://doi.org/10.1007/978-3-319-76126-8_1
    Oliveira, V. (2019). JWR Whitehand: 50 Years of Urban Morphological Research. In V. Oliveira (Ed.), J.W.R. Whitehand and the Historico-Geographical Approach to Urban Morphology (pp. 133-138). https://doi.org/10.1007/978-3-030-00620-4_7
    Oliveira, V. (ed.) (2018). Teaching Urban Morphology. Switzerland: Springer.
    Othman, H. A. S., & Alshboul, A. A. (2020). The role of urban morphology on outdoor thermal comfort: The case of Al-Sharq City - Az Zarqa. Urban Climate, 34, Article 100706. https://doi.org/10.1016/j.uclim.2020.100706
    Pearson Karl 1895VII. Note on regression and inheritance in the case of two parentsProc. R. Soc. Lond.58240–242 http://doi.org/10.1098/rspl.1895.0041
    Peng, L. L. H., & Jim, C. Y. (2013). Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation. Energies, 6(2), 598-618. https://doi.org/10.3390/en6020598
    Pyrgou, A., Hadjinicolaou, P., & Santamouris, M. (2020). Urban-rural moisture contrast: Regulator of the urban heat island and heatwaves' synergy over a mediterranean city. Environ Res, 182, 109102. https://doi.org/10.1016/j.envres.2019.109102
    Rajagopalan, P., Lim, K. C., & Jamei, E. (2014). Urban heat island and wind flow characteristics of a tropical city. Solar Energy, 107, 159-170. https://doi.org/https://doi.org/10.1016/j.solener.2014.05.042
    Ratzel, F. (1882). Anthropogeographie. Verlag von J. Engelhorn.
    Ratzel, F. (1891). Anthropogeographie (2nd ed.). Verlag von J. Engelhorn.
    Rodler, A., & Leduc, T. (2019). Local climate zone approach on local and micro scales: Dividing the urban open space. Urban Climate, 28, 100457. https://doi.org/https://doi.org/10.1016/j.uclim.2019.100457
    Semple, E. C. (1911). Influence of geographic environment. Henry Holt and Company.
    Sharmin, T., Steemers, K., & Matzarakis, A. (2015). Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka, Bangladesh. Building and Environment, 94, 734-750. https://doi.org/https://doi.org/10.1016/j.buildenv.2015.10.007
    Shi, T., Liu, L., Wen, X. C., & Qi, P. (2024). Research progress on the synergies between heat waves and canopy urban heat island and their driving factors. Frontiers in Environmental Science, 12, Article 1363837. https://doi.org/10.3389/fenvs.2024.1363837
    Shi, X. M., & Qin, M. Z. (2018). Research on the Optimization of Regional Green Infrastructure Network. Sustainability, 10(12), Article 4649. https://doi.org/10.3390/su10124649
    Shooshtarian, S., Lam, C. K. C., & Kenawy, I. (2020). Outdoor thermal comfort assessment: A review on thermal comfort research in Australia. Building and Environment, 177, Article 106917. https://doi.org/10.1016/j.buildenv.2020.106917
    Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900.
    The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
    Tong, S., Wong, N. H., Jusuf, S. K., Tan, C. L., Wong, H. F., Ignatius, M., & Tan, E. (2018). Study on correlation between air temperature and urban morphology parameters in built environment in northern China. Building and Environment, 127, 239-249.
    Vasilikou, C., & Nikolopoulou, M. (2020). Outdoor thermal comfort for pedestrians in movement: thermal walks in complex urban morphology. International Journal of Biometeorology, 64(2), 277-291. https://doi.org/10.1007/s00484-019-01782-2
    Vlami, V., Kokkoris, I. P., Charalampopoulos, I., Doxiadis, T., Giannakopoulos, C., & Lazoglou, M. (2023). A Transect Method for Promoting Landscape Conservation in the Climate Change Context: A Case-Study in Greece. Sustainability, 15(17), Article 13266. https://doi.org/10.3390/su151713266
    Walther, E., & Goestchel, Q. (2018). The P.E.T. comfort index: Questioning the model. Building and Environment, 137, 1-10. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.03.054
    Watson, I. D., & Johnson, G. T. (1987). Graphical estimation of sky view-factors in urban environments. Journal of Climatology, 7(2), 193-197. https://doi.org/10.1002/joc.3370070210
    Whitehand, J.W.R. (1981). Background to the urban morphogenetic tradition, The Urban Landscape: Historical Development and Management
    Xu, Y., Ren, C., Ma, P. F., Ho, J., Wang, W. W., Lau, K. K. L., Lin, H., & Ng, E. (2017). Urban morphology detection and computation for urban climate research. Landscape and Urban Planning, 167, 212-224. https://doi.org/10.1016/j.landurbplan.2017.06.018
    Yang, W., Wong, N. H., & Li, C. Q. (2016). Effect of Street Design on Outdoor Thermal Comfort in an Urban Street in Singapore. Journal of Urban Planning and Development, 142(1), Article 05015003. https://doi.org/10.1061/(asce)up.1943-5444.0000285
    Yi, P., Liu, L. Y., Huang, Y., Zhang, M. H., Liu, H. W., & Bedra, K. B. (2023). Study on the Coupling Relationship between Thermal Comfort and Urban Center Spatial Morphology in Summer. Sustainability, 15(6), Article 5084. https://doi.org/10.3390/su15065084
    Zhang, J. L., Li, Z., & Hu, D. (2022). Effects of urban morphology on thermal comfort at the micro-scale. Sustainable Cities and Society, 86, Article 104150. https://doi.org/10.1016/j.scs.2022.104150
    Zhang, J., Cui, P., & Song, H. (2020). Impact of urban morphology on outdoor air temperature and microclimate optimization strategy base on Pareto optimality in Northeast China. Building and Environment, 180, 107035.
    Zhang, S., & Lin, Z. (2020). Standard effective temperature based adaptive-rational thermal comfort model. Applied Energy, 264, 114723. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.114723
    Zhang, Y. W., Zhang, J. L., Zhang, X. Q., Zhou, D., & Gu, Z. L. (2021). Analyzing the Characteristics of UHI (Urban Heat Island) in Summer Daytime Based on Observations on 50 Sites in 11 LCZ (Local Climate Zone) Types in Xi'an, China. Sustainability, 13(1), Article 83. https://doi.org/10.3390/su13010083
    Zheng, Z., Zhang, Y., Mao, Y., Yang, Y., Fu, C., & Fang, Z. (2021). Analysis of SET* and PMV to evaluate thermal comfort in prefab construction site offices:Case study in South China. Case Studies in Thermal Engineering, 26, 101137. https://doi.org/https://doi.org/10.1016/j.csite.2021.101137
    Zou, Y., Chen, J., & Zong, H. (2024). Is shading a better way to cool down? Evaluation and comparison of the cooling capacity of blue-green spaces and urban shade. Ecological Indicators, 167, Article 112688. https://doi.org/10.1016/j.ecolind.2024.112688

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE