簡易檢索 / 詳目顯示

研究生: 李桂芬
Li, Kuei-Fen
論文名稱: 長週期波導光柵濾波器之設計與分析
Design and Characterization of Long-Period Waveguide Gratings
指導教授: 莊文魁
Chuang, Ricky Wen-Kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 光波導離子交換長週期光柵光波導濾波器
外文關鍵詞: Optical waveguide, Ion-exchange, Long-period grating, Optical filter
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長週期光柵(Long-period grating, LPG)形成於單模光纖或波導,其研究著重在基本波導模態(fundamental guided mode)和批覆層模態(cladding mode)之間的耦合特性,長週期光纖光柵(Long-period fiber grating, LPFG)已被廣泛研究和應用在光纖通訊系統上,然而,利用光纖來做長週期光柵會有幾何形狀和材料選擇上的限制,尤其是在主動元件上的實現。所以,為了要消除光纖在製作上的限制和實現元件積體化,長週期波導光柵(Long period waveguide grating, LPWG)已被提出研究和實現。
    在本論文中,使用Ag+-Na+離子交換技術成功的製作出可靠度高且造價低廉的積體光波導元件,並將其製作在矽酸鹽玻璃基板N-BK7,而交換混合熔鹽的來源為AgNO3:NaNO3 (mole ratio ~0.04:1)且溫度控制在340°C,而交換時間為3個小時,其折射率變化可達Δn~0.03。其批覆層的材料則是利用電漿輔助式化學氣相沉基法(PECVD),藉由控制SiH4、NH3、N2O與N2等氣體反應之流量,於玻璃基板上沉積出一系列的氮氧化矽(SiON)薄膜,此不同氮/氧比例之SiON薄膜,其有效折射率的分佈範圍可從1.47至1.94。
    我們利用模擬軟體設計四種不同光柵週期之元件,分別為Λ=141 μm、Λ=161 μm、Λ=171 μm和Λ=191 μm,其中當光柵間距為141μm時,其對比度(Contrast)最大可達20 dB,半高全寬(FWHM)約為3.5 nm,而模擬與實驗結果相符合。

    Long-period fiber gratings (LPFGs) are functioned based on the light coupling between the core guiding modes and the cladding modes in the single-mode fiber at specific wavelengths (resonance wavelengths), which have found a wide variety of applications in the optical communications. However, using geometry and material constraints associated with the fiber impose significant limitations on the functionalities of the devices could offer, notably for the cases involving active devices. To bypass the foregoing constraints, the waveguide with long-period waveguide gratings (LPG) are thus developed so that the flexibility in designing various LPG-based devices can be realized.
    In this thesis, LPWG are fabricated by the wet ion-exchange using AgNO3:NaNO3 molten salt with the mole ratio of 0.04 to 1 maintained at the temperature of 340°C. The oxynitride based cladding layer is deposited using plasma-enhanced chemical vapor deposition (PECVD) by judiciously controlling the flow rates of SiH4, NH3, N2O and N2, in such a way that SiON films with different nitrogen and oxygen ratios can be deposited, with the corresponding effective refractive indices varied from 1.47 to 1.94.
    As from the design perspective simulation software is used to design gratings with four different pitches, namely, Λ = 141 μm, Λ = 161 μm, Λ = 171 μm and Λ = 191 μm. The fabricated devices ultimately demonstrate a contrast of up to 20 dB and full width at half maximum (FWHM) of about 3.5 nm. Our results show that there is a reasonable agreement between the simulation and experimental results.

    目錄 中文摘要…………………………………………………………………I 英文摘要………………………………………………………………..III 誌謝……………………………………………………………………...V 目錄……………………………………………………………………..VI 表目錄…………………………………………………………………...X 圖目錄…………………………………………………………………..XI 第一章 序論 1.1 光通訊簡介 1 1.2 光學積體電路 4 1.3 論文架構 5 參考文獻 6 第二章 長週期光柵 2.1 導論 8 2.2 長週期光纖光柵(Long-period fiber gratings, LPFGs) 9 2.2.1 光學濾波器製作於長週期光纖光柵 12 2.3 長週期波導光柵(Long-period waveguide gratings, LPWGs) 15 參考文獻 16 第三章 離子交換法 3.1 導論 21 3.1.1 離子交換法製作光波導之好處 21 3.1.2 離子交換基本原理 22 3.2 光波導材料 23 3.2.1 離子交換使用之基板 25 3.3 濕式離子交換法 29 3.3.1 利用Ag+-Na+離子交換製作波導 32 3.4 乾式薄膜擴散離子交換法 33 參考文獻 36 第四章 波導光學特性與損耗參數量測 4.1 導論 40 4.2 光波導的耦合效益 41 4.2.1 菱鏡耦合技術 41 4.2.2 邊射耦合技術 44 4.3 折射率分佈 47 4.4 光波導損耗來源及量測 48 4.4.1 損耗的來源 48 4.4.1.1 吸收 48 4.4.1.2 散射 49 4.4.1.3 耦合損耗 49 4.4.2 損耗之量測方法 49 4.4.2.1 傳播損耗 49 4.4.2.2 剪裁量測法 50 參考文獻 51 第五章 LPWG之模擬設計與製作特性分析 5.1 導論 53 5.2 模擬結構設計 53 5.2.1 波導層與批覆層之模態有效折射率 55 5.3 元件製作流程 59 5.3.1 基板清洗 61 5.3.2 離子交換製程 62 5.3.3 定義光柵圖形於波導 64 5.3.4 沉積氮氧化矽(SiON)薄膜 66 5.3.5 研磨及拋光 68 5.3.6 光場量測 70 5.4 穿透頻譜(Transmission spectrum )之量測分析 74 5.4.1 LPWG之穿透頻譜分析 76 5.4.2 光柵週期為141 μm之穿透頻譜分析 76 5.4.3 光柵週期為161 μm之穿透頻譜分析 78 5.4.4 光柵週期為171 μm之穿透頻譜分析 80 5.4.5 光柵週期為191 μm之穿透頻譜分析 82 5.5 結論 84 參考文獻 88 第六章 結論與未來進展 6.1 結論 89 6.2 未來進展 91 參考文獻 92

    [1] S. E. Miller, “Integrated optics: An introduction,” Bell Syst. Tech. J., Vol. 48, pp. 2059-2069, Sept. 1969.
    [2] F. Kane and Robert R. Krchnavek, “Beazocyclobutene optical waveguide,” IEEE Photo. Tech. Lett., Vol. 7, No. 5, pp. 535-537, May 1995.
    [3] G. H. Olsen, “InGaAsP laser diodes,” Opt. Eng., Vol. 20, pp. 440-445, Apr. 1981.
    [4] P. Hall and P. Kaiser, “Spectral losses of unclad fibers made from high-grade vitreous silica,” Appl. Phys. Lett., Vol. 23, pp. 45-46, Apr. 1973.
    [5] T. Miya, T. Hosaka, Y. Terunuma, and T. Miyashita, “Ultra low loss single-mode fibers at 1.55 μm,” Rev. Electrical Commun. Lab., Vol. 27, pp. 497-506, Feb. 1979.
    [6] H. Nishihara, M. Haruna, and T. Suhara, Optical integrated circuits. New York: McGraw-Hill Book Company, 1989.
    [7] R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers,” Electron. Lett., Vol. 21, pp. 738-740, Aug. 1985.
    [8] S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions,” Electron. Lett., Vol. 21, pp. 737-738, Feb. 1985.
    [9] C. W. Pitt, “Sputtered glass optical waveguides,” Electron. Lett., Vol. 9, pp. 401-403, Aug. 1973.
    [10] G. H. Chartier, P. Jaussaud, A. D. Oliveira, and O. Parriaux, “Optical waveguides fabricated by electric-field controlled ion exchange in glass,” Electron. Lett., Vol. 14, pp. 132-134, Mar. 1978.
    [11] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” j.Lightwave Technol., Vol. 14, pp. 58-65, Apr. 1996.
    [12] V. Bhatia, D. Campbell, and R. O. Claus, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett., Vol. 22, pp. 648-650, May 1997.
    [13] M. N. Ng, Z. Chen, and K. S. Chiang,, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., Vol. 14, pp. 361-362, Mar. 2002.
    [14] A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am., Vol. 62, pp. 1267-1972, Nov. 1972.
    [15] D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
    [16] S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fibre bandpass filter based on hollow optical fibre and long-period grating pair,” IEEE Photon. Technol. Lett., vol. 17, pp. 115–117, Jan. 2005.
    [17] K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long-period fibre gratings,” Electron. Lett., vol. 36, pp. 1408–1409, Aug. 2000.
    [18] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in / on planar and channel waveguides: A theory description,” Opt. Laser Technol., vol. 39, pp. 1204–1213, Sept. 2007.
    [19] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,” Electron. Lett., vol. 40, pp. 422-424, Apr. 2004.
    [20] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett., vol. 86, 241115, June 2005.
    [21] X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002.
    [22] M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
    [23] M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun., vol. 208, pp. 321-327, Jul. 2002.
    [24] X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett., vol. 13, pp. 818-820, Aug. 2001.
    [25] S. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett., vol. 21, pp. 336-338, Mar. 1996.
    [26] P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band Erbium-doped fiber amplifer flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, Oct. 1997.
    [27] J. R. Qian and H. F. Chen, “Gain flatterning fiber filters using phase shifted long period fiber gratings,” Electron. Lett., vol. 34, pp. 1132-1133, May 1998.
    [28] M. Harumoto, M. Shigehara, M. Kakui, H. Kanamori, and M. Nishimura, “Compact long-period grating module with multi-attenuation peaks,” Electron. Lett., vol. 36, pp. 512-514, Mar. 2000.
    [29] X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microwave. Opt. Technol. Lett., vol. 35, pp. 283-286, May 2002.
    [30] A. P. Zhang, X. W. Chen, Z. G. Guan, S. L. He, H. Y. Tam, and W. H. Chung, “Optimization of step-changed long-period gratings for gain flattening of EDFAs,” IEEE Photon. Technol. Lett., vol. 17, pp. 121-123, Jan. 2005.
    [31] C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng., vol. 43, pp.342-345, Feb. 2004.
    [32] K. W. Chung and S. Z. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microwave. Opt. Technol. Lett., vol. 45, pp. 18-21, Aug. 2005.
    [33] P. G. Greene and H. N. Rourke, “Tailoring long period optical fibre gratings for flattening EDFA gain spectra,” Electron. Lett., vol. 35, pp. 1373-1374, Aug. 1999.
    [34] M. Harumoto, M. Shigehara, and H. Suganuma, “Gain-flattening filter using long-period fiber gratings,” J. Lightwave Technol., vol. 20, pp. 1027-1033, May 2002.
    [35] D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590-1592, Nov. 1998.
    [36] V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt., vol. 41, pp. 6351–6355, Oct. 2002.
    [37] Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol., vol. 21, pp. 3399–3405, Dec. 2003.
    [38] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
    [39] Q. Liu, K. S. Chiang, and K. P. Lor, “Long-period gratings in polymer ridge waveguides,” Optics Express, vol. 13, pp. 1150–1160, Feb. 2005.
    [40] K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,” Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
    [41] Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett., vol. 86, 241115, June 2005.
    [42] H. Nishihara, M. Haruna, and T. Suhara, Optical integrated circuits, McGraw-Hill, 1985.
    [43] T. Izawa and H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Opt., vol. 12, pp. 1240–1244, Dec. 1972.
    [44] J. J. Gribble and J. M. Arnold, “Beam propagation method and geometrical optics,” IEE Proc., Vol. 135, pp. 343-348, Oct. 1988.
    [45] M. C. Gupta and J. Ballato, The handbook of photonics 2nd ed. Boca Raton: CRC/Taylor & Francis, 2007.
    [5] R. H. Doremus, “Exchange and Diffusion of Ions in Glass,” J. Phys. Chem., Vol. 68, pp. 2212-2218, Aug. 1964.
    [46] R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: A review,” J. Lightwave Technol., Vol. 6, pp. 984-1002, June 1988.
    [47] Y. H. Won, P. C. Jaussaud, and G. H. Chartier, “Three-Prism Loss Measurement of Optical Waveguides,” Appl. Phys. Lett., Vol. 37, No. 3, pp. 269-271, Aug. 1980.
    [48] R. G. Hunsperger, Integrated Optics. Berlin: Springer-Verlag, 1984.
    [49] R. G. Walker, “Simple and Accurate Loss Measurement Technique for Semiconductor Optical Waveguides,” Electron. Lett., Vol. 21, No. 13, pp. 581-583, June 1985.
    [50] Y. Okamura, A. Miki, and S. Yamamoto, “Observation of Wave Propagation in Integrated Optical Circuits,” Appl. Opt., Vol. 25, No. 19, pp. 3405-3408, Jan. 1986.
    [51] R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Applied Optics, Vol. 12, pp. 2901-2908, Apr. 1973.
    [52] C. J. Ma, “Tunable Thermo-Optical Mach-Zehnder Waveguide Interferometer Fabricated in Glass by Ion-Exchange Method,” National Cheng Kung University, Master thesis, 2010.
    [53] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description,” Optics & Laser Technology, Vol. 39, pp. 1204-1213, Sept. 2007.
    [54] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photonics Technol. Lett, Vol. 15, pp. 1094-1096, Aug. 2003.
    [55] B. D. Choudhury, S. Pal, and B. R. Singh, “Optimal design of silica-based temperature-insensitive long-period waveguide gratings for realization of athermal refractive-index sensor,” Sensors and Actuators A, Vol. 141, pp. 328-333, Oct. 2008.
    [56] K. S. Chiang, K. P. Lor, C. K. Chow, Y. M. Chu, and H. P. Chan, “Long-Period Gratings Waveguide Gratings,” Jpn. J. Appl. Phys., Vol. 43, pp. 5690-5696, Jan. 2004.
    [57] Q Lin, K. S. Chiang, and K. P. Lor, “Dual resonance in a long- period waveguide grating,” Appl. Phys. B, Vol. 86, pp. 147-150, May 2007.
    [59] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photonics Technol. Lett, Vol. 15, pp. 1094-1096, Aug. 2003.
    [60] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett., Vol. 86, 241115, June 2005.
    [61] Y. B. Cho, B. K. Yang, J. H. Lee, and J. B. Yoon,” Silicon Photonic Wire Filter Using Asymmetric Sidewall Long-Period Waveguide Grating in a Two-Mode Waveguide,” IEEE Photonics Technol. Lett, Vol. 20, pp. 520-522, Apr. 2008.
    [62] S. Pal, A. Chauhan, M. Singh, P. Kumar, M. Sharma, N. Pradhan, K. Singh, and C. Dhanavantri, “Realization of Long-Period Corrugated Grating in Silica-on-Silicon-Based Channel Waveguide,” IEEE Photonics Technol. Lett, Vol. 21, pp. 1490-1492, Oct. 2009.
    [63] J. Jiang, C. L. Callender, and C. J. Ledderhof, ” Corrugation-Induced SiO2 Planar Long-Period Gratings for Photonic Applications,” IEEE Photonics Technol. Lett, Vol. 20, pp. 520-522, Jul. 2010.

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE