簡易檢索 / 詳目顯示

研究生: 楊舜如
Yang, Shuen-Ru
論文名稱: 肺腺癌細胞的內生PD-L1藉由自身PD-1受體促使細胞侵犯性
The intrinsic PD-L1 promotes cellular invasiveness via their PD-1 receptor in lung adenocarcinoma cells
指導教授: 蘇文彬
Su, Wen-Pin
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所碩士在職專班
Institute of Clinical Medicine(on the job class)
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 50
中文關鍵詞: 肺腺癌PD-1PD-L1上皮間質轉化細胞遷移細胞侵襲化療敏感性淋巴轉移
外文關鍵詞: Lung adenocarcinoma, PD-1, PD-L1, Epithelial mesenchymal transition, Migration, Invasion, Chemosensitivity, Metastatic lymph nodes
相關次數: 點閱:115下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌是全世界造成最多死亡的癌症,T細胞的PD-1及其位於腫瘤細胞的配體PD-L1,在免疫檢查哨治療中扮演重要角色,並已應用於肺癌治療。細胞遷移及侵襲是構成癌細胞轉移的要件;之前實驗結果已知在肺腺癌細胞株, CL1-0和CL1-5, PD-L1過度表現和癌細胞遷移有關連性,同時也有較多的上皮間質轉化(epithelial mesenchymal transition, EMT)調節因子及間質標記蛋白表現。根據文獻,PD-1 可促進自身腫瘤細胞的生長。因此,我們將探討肺腺癌細胞中,PD-L1和PD-1的交互作用及細胞生長率、化療敏感性的影響以及臨床預後。
    我們實驗使用肺腺癌細胞株CL1-0; CL1-5為較具侵犯性的細胞株,源自CL1-0細胞。我們並從CL1-0細胞中找出PD-L1過度表現之細胞。細胞遷移及侵犯能力使用transwell assay評估;EMT標記蛋白及調節因子使用西方墨點法評估,並且觀察細胞型態。我們並使用MTT assay和 colony formation assay來測試化療敏感性及細胞生長率。另外,藉由在手術檢體上,以IHC染色,了解肺癌細胞PD-L1表現量和臨床預後的關係。最後,為了解PD-1和PD-L1是否有交互作用,將抗PD-1抗體加入CL1-0, CL1-5, CL1-0-PDL1細胞,比較其遷移及侵襲性及細胞型態;並用siRNA抑制PD-1觀察其影響。
    我們實驗結果確認PD-L1促使人類肺腺癌細胞遷移及侵犯性,並且和EMT有相關。在PD-L1表現較多之細胞,有較強的遷移能力、較多的間質標記蛋白及EMT標記蛋白表現。我們同時觀察到,CL1-5和CL1-0-PDL1細胞, 為較多PD-L1表現之細胞株,其細胞型態類似紡錘型;而CL1-0細胞則接近圓形。於收集肺腺癌的手術檢體,發現淋巴轉移之PD-L1表現量明顯多於沒有淋巴轉移的患者,此一臨床結果配合前述實驗結果,認為PD-L1表現量較多的細胞是較具有侵犯性的。在細胞生長率方面,PD-L1表現減少細胞生長率,但對化療的敏感度,沒有很大差異。
    在加入抗PD-1抗體至CL1-5, CL1-0, and CL1-0-PDL1細胞後,其遷移及侵襲能力都減弱了,這代表抗PD-1抗體阻斷了癌細胞本身的PD-1和PD-L1連結。這現象,我們也以PD-1 siRNA再次證實。因此我們認為肺腺癌細胞內生的PD-1/PD-L1互相作用,促使細胞遷移及侵襲性。
    此一研究證實肺腺癌細胞合併較高PD-L1表現,會促使細胞遷移、侵襲、EMT及少量化療抗性。PD-L1表現會減少細胞生長率。而肺癌細胞本身PD-1和PD-L1交互作用亦造就細胞遷移及侵襲性。

    Lung cancer is the most frequent cause of cancer death. Programmed death 1 (PD-1) in T cells and its ligand PD-L1 in tumor cells play a key role in immune checkpoint therapy and had applied to advanced stage lung cancer. Migration and invasion of tumor cells is a prerequisite for tumor cell metastasis. Our previous study found that in CL1-5 cells, derived from CL1-0 cells, with high PD-L1 expression possessed higher cellular migration ability than the parental CL1-0 cells with less PD-L1 expression. CL1-0 cells with PD-L1 overexpression had more expression of EMT (epithelial mesenchymal transition) regulator and mesenchymal marker. Since intrinsic PD-1 receptor functions promote tumor growth was reported, we will investigate the interaction between PD-1 and PD-L1 in lung adenocarcinoma cell lines, the impact on chemosensitivity, and clinical outcome.
    In vitro experiments, lung adenocarcinoma CL1-5 cells, derived from CL1-0 cells. We prepared PD-L1-overexpression human lung adenocarcinoma cell line, derived from CL1-0 cells (CL1-0-PD1). Migration and invasion ability were assessed by transwell assay; EMT marker and regulator were evaluated by Western blotting. We also observed the morphology of cells. Further, we evaluated cellular proliferation and chemosensitivity by MTT assay and colony formation assay. We correlate PD-L1 expression in lung cancer cells with clinical outcome by IHC stain clinically.To explore interaction between PD1 and PD-L1, we added anti-PD-1 antibody into CL1-0, CL1-5, and CL1-0-PDL1 cells, and then test migration, invasion and cellular morphology. We also suppressed PD-1 by siRNA to test whether PD-1/PDL-1 interaction contributed to the EMT change.
    Our study confirmed that PD-L1 up-regulated cell migration and invasiveness in human lung adenocarcinoma cells and promotes EMT. We observed that CL1-5 and CL1-0-PDL1, which had more PD-L1 expression, are shaped like spindles; while CL1-0 cells are more rounded. PD-L1 expression also decreased cellular proliferation and had little influence on chemsensitivity. Finally, we found that higher PD-L1 expression was correlated with lymph node metastasis in clinical specimen.
    After adding anti-PD1 antibody in CL1-5, CL1-0, and CL1-0-PDL1 cells, migration and invasion ability decreased. These result indicated anti-PD-1 antibody block the link between PD-1 and PD-L1 in cancer cells. The phenomenon was confirmed by PD-1 siRNA. Therefore, PD-1/PD-L1 axis regulated cancer cells migration and invasiveness.
    Taken together, our study showed lung adenocarcinoma cells with higher PD-L1 expression promote cell migration, invasiveness, EMT, and little chemoresistance. PD-L1 expression lowers proliferation rate. PD-1 and PD-L1 interaction on lung adenocarcinoma cells contribute cellular migration and invasiveness.

    中文摘要-------------------------------------------------I 英文摘要------------------------------------------------II 誌謝---------------------------------------------------IV 目錄----------------------------------------------------V 表目錄------------------------------------------------VII 圖目錄-----------------------------------------------VIII 符號----------------------------------------------------X 主文----------------------------------------------------1 1.Background--------------------------------------------1 1.1 Introduction of lung cancer-------------------------1 1.2 Cancer immunology-----------------------------------2 1.3 PD-L1 expression predict the efficacy of anti-PD-1/PD-L1 therapy-------------- --------------------------3 1.4 Immunotherapy targets on PD-1/PD-L1 in lung cancer--3 1.5 Regulation ofPD-L1----------------------------------4 1.6 PD-L1 expression and lung cancer prognosis----------4 1.7 Epithelial mesenchymal transition (EMT)-------------5 1.8 Intrinsic PD-1 receptor in cancer cell--------------6 2. Specific Aim-----------------------------------------7 3. Research Design--------------------------------------9 4. Laboratory methods----------------------------------11 5. Results---------------------------------------------15 5.1.1 PD-L1 overexpression lung adenocarcinoma cells have more migration and invasion ability.-------------------15 5.1.2 Silencing PD-L1 inhibited the ability of cell migration and invasion---------------------------------15 5.2.1 PD-L1 overexpression lung adenocarcinoma cells have more mesenchymal marker and EMT regulator--------------16 5.2.2 Different PD-L1 expression had different cell morphology---------------------------------------------16 5.2.3 PD-L1 located not only on cell membrane but within whole cell---------------------------------------------17 5.3.1 PD-L1 expression decreased cell proliferation----17 5.3.2 PD-L1 expression decreased cell viability--------17 5.3.3 PD-L1 may had little impact on chemoresistance---18 5.4.1 PD-L1 expression in clinical surgical specimen---18 5.4.2 Higher stage of lung adenocarcinoma had higher PD-L1 expression---------------------------------------19 5.5.1 Migration and invasion of lung adenocarcinoma cells reduced after blocking intrinsic PD-1 by antibody------19 5.5.2 Lung adenocarcinoma cells was switched to more epithelial phenotype after blocking intrinsic PD-1 ----20 5.5.3 PD-1 silencing led to epithelial type of the cells--------------------------------------------------------20 6. Discussion------------------------------------------21 參考文獻------------------------------------------------25 附錄---------------------------------------------------31

    Aguiar PN Jr, Santoro IL, Tadokoro H, de Lima Lopes G, Filardi BA, Oliveira P, Mountzios G and de Mello RA “The role of PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: a network meta-analysis.” Immunotherapy 8(4): 479-88, (2016).

    Ameratunga M, Asadi K, Lin X, Walkiewicz M, Murone C, Knight S, Mitchell P, Boutros P, John T “PD-L1 and tumor infiltrating lymphocytes as prognostic markers in resected NSCLC.” PLoS One 11(4): e0153954, (2016)

    Anjomshoaa A, Nasri S, Humar B, McCall JL, Chatterjee A, Yoon HS, McNoe L, Black MA and Reeve AE “Slow proliferation as a biological feature of colorectal cancer metastasis.” Br J Cancer 101(5): 822-8, (2009).

    Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M, Siemens DR, Koti M, Craig AW, Graham CH “Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis.” Oncotarget” 7(9): 10557-67, (2016).

    Chan BA and Hughes BG “Targeted therapy for non-small cell lung cancer: current standards and the promise of the future.” Transl Lung Cancer Res 4(1): 36-54, (2015).

    Chen DS, Irving BA and Hodi FS “Molecular pathways: next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1.” Clin Cancer Res 18(24): 6580-7, (2012).

    Chen DS and Mellman I “Oncology meets immunology: the cancer-immunity cycle.” Immunity 39(1): 1-10, (2013)

    Chen J, Jiang CC, Jin L and Zhang XD “Regulation of PD-L1: a novel role of pro-survival signalling in cancer.” Ann Oncol 27(3): 409-16, (2016)

    Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn YH, Byers LA, Zhang X, Yi X, Dwyer D, Lin W, Diao L, Wang J, Roybal JD, Patel M, Ungewiss C, Peng D, Antonia S, Mediavilla-Varela M, Robertson G, Jones S, Suraokar M, Welsh JW, Erez B, Wistuba II, Chen L, Peng D, Wang S, Ullrich SE, Heymach JV, Kurie JM and Qin FX “Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression.” Nat Commun 5: 5241, (2014).

    Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, Drerup JM, Padron A, Conejo-Garcia J, Murthy K, Liu Y, Turk MJ, Thedieck K, Hurez V, Li R, Vadlamudi R, Curiel TJ.” Tumor-Intrinsic PD-L1 Signals Regulate Cell Growth, Pathogenesis, and Autophagy in Ovarian Cancer and Melanoma.” Cancer Res 76(23): 6964-6974. (2016)

    Vimentin is widely used as Fife BT and Bluestone JA “Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways.” Immunol Rev 224:166-82, (2008).

    Friedl P and Wolf K “Tumour-cell invasion and migration: diversity and escape mechanisms.” Nat Rev Cancer 3(5): 362-74, (2003).

    Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, Parisi G, Saus CP, Torrejon DY, Graeber TG, Comin-Anduix B, Hu-Lieskovan S, Damoiseaux R, Lo RS and Ribas A “Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression.” Cell Rep 19(6):1189-1201, (2017).

    Garg M “Epithelial-mesenchymal transition - activating transcription factors - multifunctional regulators in cancer.” World J Stem Cells 5(4): 188-95, (2013).

    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L and KEYNOTE-001 Investigators “Pembrolizumab for the treatment of non-small-cell lung cancer.” N Engl J Med 372(21): 2018-28, (2015).
    He J, Hu Y, Hu M and Li B “Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer.” Sci Rep 5: 13110, (2015).

    Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A and Sarkar S “EMT and tumor metastasis.” Clin Transl Med 4:6, (2015).

    Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M and Garon EB “Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial.” Lancet 387(10027): 1540-50, (2016).

    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS and Hodi FS “Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.” Nature 515(7528): 563-7, (2014).

    Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2014, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, (2017).

    Kalluri R and Weinberg RA “The basics of epithelial-mesenchymal transition.” J Clin Invest 119(6): 1420-8, (2009).

    Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Petersen OW “The morphologies of breast cancer cell lines in threedimensional assays correlate with their profiles of gene expression.” Mol.
    Oncol. (1)1: 84-96. (2007)

    Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, Elco CP, Lee N, Juneja VR, Zhan Q8, Lian CG, Thomi R, Hoetzenecker W, Cozzio A, Dummer R, Mihm MC Jr, Flaherty KT, Frank MH, Murphy GF, Sharpe AH, Kupper TS and Schatton T “Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth.” Cell 162(6): 1242-56, (2015).

    Liu CY, Lin HH, Tang MJ, Wang YK “Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation.” Oncotarget 30;6(18):15966-83, (2015).

    Lou Y, Diao L, Cuentas ER, Denning WL, Chen L, Fan YH, Byers LA, Wang J, Papadimitrakopoulou VA, Behrens C, Rodriguez JC, Hwu P, Wistuba II, Heymach JV and Gibbons DL “Epithelial-Mesenchymal Transition Is Associated with a Distinct Tumor MicroenvironmentIncluding Elevation of Inflammatory Signals and Multiple Immune Checkpoints in LungAdenocarcinoma.” Clin Cancer Res 22(14): 3630-42, (2016).

    Lyons SM, Alizadeh E, Mannheimer J, Schuamberg K, Castle J, Schroder B, Turk P, Thamm D, Prasad A “Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas.” Biol Open 5(3): 289-99,(2016)

    Mahoney KM, Sun H, Liao X, Hua P, Callea M, Greenfield EA, Hodi FS, Sharpe AH, Signoretti S, Rodig SJ and Freeman GJ “PD-L1 Antibodies to Its Cytoplasmic Domain Most Clearly Delineate Cell Membranes in Immunohistochemical Staining of Tumor Cells.” Cancer Immunol Res 3(12): 1308-15, (2015).

    Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, Lee CK, Sebastian M, Templeton A, Mann H, Marotti M, Ghiorghiu S, Papadimitrakopoulou VA; AURA3 Investigators” Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer.” N Engl J Med 376(7): 629-40. (2017).

    National Comprehensive Cancer Network (NCCN). Non-Small Cell Lung Cancer (Version 7.2017). https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf Accessed June 22, 2017.

    Ost DE, Jim Yeung SC, Tanoue LT and Gould MK “Clinical and organizational factors in the initial evaluation of patients with lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines.” Chest 143(5 Suppl): e121S-e141S, (2013).

    Patel SP and Kurzrock R “PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy.” Mol Cancer Ther. 14(4): 847-56, (2015).

    Sasaki H, Suzuki A, Shitara M, Hikosaka Y, Okuda K, Moriyama S, Yano M and Fujii Y “PD-L1 gene expression in Japanese lung cancer patients.” Biomed Rep 1(1): 93-6, (2013).

    Satelli A, Batth IS, Brownlee Z, Rojas C, Meng QH, Kopetz S and Li S “Potential role of nuclear PD-L1 expression in cell surface vimentin positive circulating tumor cell as a prognostic marker in cancer patients.” Sci Rep 6: 28910, (2016).

    Siegel RL, Miller KD and Jemal A “Cancer Statistics, 2017.” CA Cancer J Clin 67(1): 7-30, (2017).

    Sorensen SF, Zhou W, Dolled-Filhart M, Georgsen JB, Wang Z, Emancipator K, Wu D, Busch-Sørensen M, Meldgaard P and Hager H “PD-L1 Expression and Survival among Patients with Advanced Non-Small Cell Lung Cancer Treated with Chemotherapy.” Transl Oncol 9(1): 64-9, (2016).

    Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY and Thiery JP “Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients.” EMBO Mol Med 6(10): 1279-93, (2014).

    Tanaka Y, Terai Y, Kawaguchi H, Fujiwara S, Yoo S, Tsunetoh S, Takai M, Kanemura M, Tanabe A and Ohmichi M “Prognostic impact of EMT (epithelial-mesenchymal-transition)-related protein expression in endometrial cancer.” Cancer Biol Ther 14(1): 13-9, (2013).

    Tsai JH and Yang J “Epithelial-mesenchymal plasticity in carcinoma metastasis.” Genes Dev 27(20): 2192-206, (2013).
    Wang A, Wang HY, Liu Y, Zhao MC, Zhang HJ, Lu ZY, Fang YC, Chen XF and Liu GT “The prognostic value of PD-L1 expression for non-small cell lung cancer patients: a meta-analysis.” Eur J Surg Oncol 41(4): 450-6, (2015).

    Wu J, Savooji J, Liu D.” Second- and third-generation ALK inhibitors for non-small cell lung cancer” J Hematol Oncol. 9:19.(2016)

    Yamada S, Fuchs BC, Fujii T, Shimoyama Y, Sugimoto H, Nomoto S, Takeda S, Tanabe KK, Kodera Y, Nakao A “Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer.” Surgery 154(5):946-54, (2013)

    Yu H, Boyle TA, Zhou C, Rimm DL, Hirsch FR “PD-L1 expression in lung cancer.” J Thorac Oncol 11(7): 964–975, (2016)

    Zhao J, Dong D, Sun L, Zhang G and Sun L “Prognostic significance of the epithelial-to-mesenchymal transition markers e-cadherin, vimentin and twist in bladder cancer.” Int Braz J Urol 40(2): 179-89, (2014).

    Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, Yao Y and Li D “The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer.” Mol Cancer 16(1): 52, (2017).

    Zhou ZJ, Zhan P and Song Y “PD-L1 over-expression and survival in patients with non-small cell lung cancer: a meta-analysis.” Transl Lung Cancer Res 4(2): 203-8, (2015).

    衛生福利部國民健康署,中華民國103年癌症登記年報, Cancer registry annual report, 2014, Taiwan. P. 3-5. (2017)

    下載圖示 校內:2023-06-14公開
    校外:2023-06-14公開
    QR CODE