| 研究生: |
石維謙 Shih, Wei-Cheng |
|---|---|
| 論文名稱: |
望目及望小特性下,非常態多變量製程能力指標之制定與評估 Development of Non-Normal Multivariate Process Capability Indices for Nominal-the-Best and Smaller-the-Better Cases |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 多變量製程能力指標 、望目特性 、望小特性 |
| 外文關鍵詞: | Multivariate process capability indices, nominal-the-best cases, smaller-the-better cases |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般而言,工業製程中常有多個彼此相關的品質特性皆可能造成產品與製程異常。目前已有多位學者致力於多重品質特性(多變量)製程能力指標之研究,但彼等之研究多著重在品質特性呈常態之情況。實務上,一些與環境績效或與能源使用有關的多重關鍵品質特性卻常呈現非常態分配且為相依資料的情況,然而,甚少學者探討此類狀況下多變量製程能力指標之制定。因此,本研究擬探討當多重品質特性呈非常態分配且產品工程規格屬望目及望小特性情形下非常態多變量製程能力指標之制定與評估,我們利用Weighted Standard Deviation (WSD)方法對Pan與Lee (2010) 所訂定之常態多變量製程能力指標NMCp與NMCpm指標進行修正,並據此制定出新的非常態多變量製程能力指標RNMCp(Revised NMCp)和RNMCpm(Revised NMCpm)。此外,針對Niverthi與Dey (1995) 訂定望小特性下的多變量常態製程能力指標(ND index),我們亦利用WSD法進行修正並提出改良的非常態多變量製程能力指標RNMCpu。
最後,我們以模擬的方式比較於不同右(左)偏分配組合下,本研究所提出之新指標與MCp、MCpm、NMCp、NMCpm及ND在反映非常態多變量製程表現上之優劣。模擬分析結果顯示無論製程平均是否偏離目標值,新非常態多變量製程能力指標與上述指標相較均能正確反映非常態多變量製程真實的不良率。
Generally, an industrial product has more than one quality characteristic. In order to establish performance measures for evaluating the capability of a multivariate manufacturing process, several multivariate process capability indices have been developed based on the assumption of normality in the past few years. However, the environmental performance, such as air pollution and energy utilization data may not follow normal distribution. Thus, in this research, we develop two non-normal multivariate process capability indices; RNMCp (Revised NMCp) and RNMCpm (Revised NMCpm) by relieving the normality assumption for both nominal-the-best and smaller-the-better cases. Based on the two normal multivariate process capability indices proposed by Pan and Lee (2010), we use weighted standard deviation method (WSD) to revise their NMCp and NMCpm indices. In addition, we also use WSD method to revise a multivariate process capability index (ND index) established by Niverthi and Dey (1995).
Finally, we conduct simulation studies to compare the performance of correctly reflecting the true nonconforming rate among these multivariate indices. Simulation results show that our proposed indices outperform MCp, MCpm, NMCp, NMCpm and ND indices under different combinations of two right skewed/left skewed distributions regardless of the process mean hitting the target or not.
1. Ahmed, S. E. (2005), “Assessing the process capability index for non-normal processes”, Journal of Statistical Planning and Inference, Vol.129, pp.195-206.
2. Chan, L. K., Cheng, S. W. and Spiring, F. A. (1988), “A new measure of process capability: Cpm”, Journal of Quality Technology, Vol.20, No.3, pp.162-175.
3. Chang, Y. S. and Bai, D. S. (2001), “Control charts for positively-skewed populations with weighted standard deviations”, Quality and Reliability Engineering International, Vol.17, pp.397-406.
4. Chang, Y. S. and Bai, D. S. (2002), “Process capability indices for positively skewed populations”, Quality and Reliability Engineering International, Vol.18, pp.383-393.
5. Chang, Y. S. and Bai, D. S. (2004), “A multivariate control chart for skewed populations using weighted standard deviations”, Quality and Reliability Engineering International, Vol.20, pp.31-46.
6. Chen, H. A. (1994), “A multivariate process capability index over a rectangular solid tolerance zone”, Statistic Sinica, Vol.4, pp.749-758.
7. Chen, K. S. and Pearn, W. L. (1997), “An application of non-normal process capability indices”, Quality and Reliability Engineering International, Vol. 13, pp. 355-360.
8. Chen, J. P. and Ding, C. G. (2001), “A new process capability index for non-normal distributions”, International Journal of Quality and Reliability Management, Vol.18, No.7, pp.762-770.
9. Choobineh F. and Branting, D. (1986), “A simple approximation for semivariace”, European Journal of Operations Research, Vol.27, pp.364-370.
10. Clements, J. A. (1989), “Process capability calculations for non-normal distribution”, Quality Progress, Vol.22, No.9, pp.95-100.
11. Hubele, N. F., Shahriari, H. and Cheng, C. S. (1991), “A bivariate process of capability vector” in Statistics Process Control in Manufacturing edited by J. B. Keats, and D. C. Montgomery. Marcel Dekker, New York, N.Y., pp.299-310.
12. Juran, J. M. (1974), Quality Control Handbook, McGraw-Hill, New York.
13. Kane, V. E. (1986), “Process Capability Indices”, Journal of Quality Technology, Vol.18, No.1, pp.41-52.
14. Kocherlakota, S. and Kocherlakota, K. (1991), “Process Capability Index: Bivariate Normal Distribution”, Commun. Statist. – Theory Method, Vol.20.
15. Krishnamoorthi, K. S. (1990), “Capability Indices for Processes Subject to Unilateral and Positional Tolerances”, Quality Engineering, Vol.2.
16. Lee, C. Y. and Pan, J. N. (2012), “Sample Size Determination for Lower Confidence Limits for Estimating Multivariate Process Capability Indices,” accepted by Journal of Applied Statistics.
17. Niverthi, M. and Dey, D. K. (1995), “Multivariate Process Capability: A Bayesian Perspective”, Technical Report, Dept. of Statistics, University of Connecticut, Storrs.
18. Pearn, W. L., Kotz, S. and Johnson, N. L. (1992), “Distributional and inferential properties of process capability indices”, Journal of Quality Technology, Vol.24, No.4, pp.216-231.
19. Pan, J. N. and Lee, C. Y. (2010), “New capability indices for evaluating the performance of multivariate manufacturing processes”, Quality and Reliability Engineering International, Vol.26, No. 1, pp.3-15.
20. Taam, W., Subbaiah, P. and Liddy, J. W. (1993), “A note on multivariate capability indices”, Journal of Applied Statistics, Vol.20, No.3, pp.339-351.
21. Wang, F. K. (2006), “Quality evaluation of a manufactured product with multiple characteristics”, Quality and Reliability Engineering International, Vol. 22, pp.225-236.
22. 潘浙楠、李仁凱 (2003),“多重品質特性下製程能力指標之比較研究”,品質學報第十卷,第一期,149-176頁。