| 研究生: |
陳彥儒 Chen, Yen-Ju |
|---|---|
| 論文名稱: |
探討兩種不同林火適應策略之松樹其火燒後土壤微生物相變化 Investigating post-fire changes in soil microbiome in two Pinus species with distinct fire-adaptive strategies |
| 指導教授: |
黃兆立
Huang, Chao-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 森林火災 、霰彈槍總體基因體學 、松屬植物 、土壤微生物 |
| 外文關鍵詞: | Wildfire, Pinus, Shotgun Metagenomics, Soil bacteria |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球氣候變遷加劇,森林火災的頻率和嚴重程度持續上升,凸顯研究火災對土壤微生物影響的重要性,森林土壤微生物在火燒後的植物再生和養分循環中扮演著關鍵角色。惠蓀林場2021年於杜鵑嶺的松林地內發生森林火災,本研究於相同的採樣地點獲取火燒前和火燒後 (8個月) 的土壤進行比較。其中依照不同林火適應策略的松樹類別區分為 : 火災適應型(Pinus亞屬,Pinus taiwanensis,台灣二葉松)和火災迴避型(Strobus亞屬,Pinus morrisonicola,台灣五葉松)。火燒前後土壤性質和微生物群落的變化。結果顯示,火燒後兩地的土壤pH提高,但電導度和總碳 (C)、氮 (N)含量皆呈下降趨勢。此外,比較火燒前後的土壤離子濃度後發現火燒前兩種松林之間存在顯著差異。在 Strobus 樣點,觀察到的 NO3- 和 SO42- 離子濃度明顯高於Pinus樣點,而其他離子(Cl-、Na+、NH4+、K+、Mg2+ 和 Ca2+)則沒有檢測到顯著變化。利用霰彈槍總體基因體學 (shotgun metagenomics) 的方法分析土壤微生物群落的結果顯示,火燒後α多樣性指數顯著增加,顯示火災可能為土壤微生物創造新的生態位。然而,不同松樹種類對土壤微生物群落表現出不同的影響,其中Strobus樣點的微生物多樣性略高於Pinus樣點。我們觀察到在微生物門的級別上,綠彎菌門、厚壁菌門和放線菌門的豐度顯著增加,顯示這些微生物可能具有適應火燒後的能力。同時,酸桿菌門的豐度顯著減少,這顯現出火燒對土壤環境和微生物群落的影響是多方面的,並且能促進某些微生物的生長。因此我們利用基因註釋的方法了解野火燃燒後土壤環境和植物群落組成的變化如何與微生物相互作用。以闡明火燒前後的土壤微生物功能性組成的變化。本文結果有助於全面理解火災對松林生態系統的影響,並為森林資源的管理提供參考依據。
As global climate change intensifies, forest fires are becoming more frequent and intense, Forest soil microbiomes have important ecosystem roles, such as sequestering soil carbon and nitrogen, processing soil nutrients, and forming critical interactions that support vegetation growth. This emphasizes the importance of studying the impact of fire on soil microbes. In 2021, a forest fire occurred in the Huishan Experimental Forest Station. This study compares soil samples from the same locations before the fire and eight months after. We compared two different pine species adapted to distinct fire regimes: a fire-tolerator (Pinus taiwanensis, subg. Pinus,台灣二葉松) and a fire-avoider (Pinus morrisonicola, subg. Strobus,台灣五葉松). We analyzed changes in soil properties and microbial communities before and after the fire, utilizing shotgun metagenomics technology to examine soil microbial communities. The results indicated that prior to the fire the concentrations of NO3- and SO42- were significantly higher at the Strobus site compared to the Pinus site, a difference that disappeared post-fire. Following the fire, the alpha diversity index increased significantly, particularly at the Strobus site. At the class level, Thermophiles, Gammaproteobacteria, and Ktedonobacteria were significantly enriched after the fire. We discovered that the microbial clusters enriched post-fire showed an increase in genes associated with pyrolytic carbon utilization, potentially enhancing their post-fire survival. These findings indicate that certain microbes possess traits that enable them to adapt to the new ecological niches created by fire. The impact of fire on soil microbial communities is multifaceted, causing short-term damage to some microbes while promoting the growth of others. Our genomic analysis reveals shifts in soil microbial taxonomy and function before and after the fire, offering insights into post-fire soil microbiome recovery.
Abney, R. B., Sanderman, J., Johnson, D., Fogel, M. L., & Berhe, A. A. (2017). Post-wildfire erosion in mountainous terrain leads to rapid and major redistribution of soil organic carbon. Frontiers in Earth Science, 5, 99.
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J., Clarke, H., Dowdy, A. J., ... & Boer, M. M. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth and Environment, 2,1-17.
Allison, S. D., & Martiny, J. B. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105, 11512-11519.
Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32-46.
Archibald, S., Lehmann, C. E., Gómez-Dans, J. L., & Bradstock, R. A. (2013). Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences, 110, 6442-6447.
Bárcenas-Moreno, G., & Bååth, E. (2009). Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biology and Biochemistry, 41, 2517-2526.
Bárcenas-Moreno, G., García-Orenes, F., Mataix-Solera, J., Mataix-Beneyto, J., & Bååth, E. (2011). Soil microbial recolonisation after a fire in a Mediterranean forest. Biology and Fertility of Soils, 47, 261-272.
Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 326-349.
Brown, S. P., Veach, A. M., Horton, J. L., Ford, E., Jumpponen, A., & Baird, R. (2019). Context dependent fungal and bacterial soil community shifts in response to recent wildfires in the Southern Appalachian Mountains. Forest Ecology and Management, 451, 117520.
Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., ... & Pyne, S. J. (2009). Fire in the Earth system. Science, 324, 481-484.
Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12, 59–60
Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143, 1-10.
Certini, G., Moya, D., Lucas-Borja, M. E., & Mastrolonardo, G. (2021). The impact of fire on soil-dwelling biota: A review. Forest Ecology and Management, 488, 118989.
Chiang, P. N., Zhuang, S. Y., Wang, Y. N., Wang, W., Wang, M. K., & Lin, S. T. (2008). Soil organic matter and soil physicochemical properties associated with forest fires in central Taiwan. Soil Science, 173, 768-778.
Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanase, M., Koutsias, N., et al. (2019). Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, 225, 45–64.
Collier, F. A., & Bidartondo, M. I. (2009). Waiting for fungi: The ectomycorrhizal invasion of lowland heathlands. Journal of Ecology, 97, 950–963.
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., Averill, C., & Maynard, D. S. (2019). The global soil community and its influence on biogeochemistry. Science, 365(6455).
Dao, V. Q., Potts, S. E., Johnson, C. N., Sikes, B. A., & Platt, W. J. (2022). Substrate and low intensity fires influence bacterial communities in longleaf pine savanna. Scientific Reports, 12, 20904.
de Miera, L. E. S., Pinto, R., Gutierrez-Gonzalez, J. J., Calvo, L., & Ansola, G. (2020). Wildfire effects on diversity and composition in soil bacterial communities. Science of The Total Environment, 726, 138636.
Derroire, G., Balvanera, P., Castellanos‐Castro, C., Decocq, G., Kennard, D. K., Lebrija‐Trejos, E., ... & Healey, J. R. (2016). Resilience of tropical dry forests–a meta‐analysis of changes in species diversity and composition during secondary succession. Oikos, 125, 1386-1397.
Docherty, K. M., Balser, T. C., Bohannan, B. J., & Gutknecht, J. L. (2012). Soil microbial responses to fire and interacting global change factors in a California annual grassland. Biogeochemistry, 109, 63-83.
Dooley, S. R., & Treseder, K. K. (2012). The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry, 109, 49-61.
Donato, D. C., Campbell, J. L., & Franklin, J. F. (2012). Multiple successional pathways and precocity in forest development: can some forests be born complex. Journal of Vegetation Science, 23, 576-584.
Doerr, S. H., Santin, C., Merino, A., Belcher, C. M., & Baxter, G. (2018). Fire as a removal mechanism of pyrogenic carbon from the environment: effects of fire and pyrogenic carbon characteristics. Frontiers in Earth Science, 6, 342027.
Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L., & Hart, S. C. (2020). High‐severity wildfire leads to multi‐decadal impacts on soil biogeochemistry in mixed‐conifer forests. Ecological Applications, 30, e02072.
Dove, N. C., Taş, N., & Hart, S. C. (2022). Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. The ISME Journal, 16, 1853-1863.
Ekinci, H. U. S. E. Y. I. N. (2006). Effect of forest fire on some physical, chemical and biological properties of soil in Çanakkale, Turkey. International Journal of Agriculture and Biology, 8, 102-106.
Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M., & Glassman, S. I. (2022). Mega‐fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Molecular Ecology, 31, 2475-2493.
Filippidou, S., Wunderlin, T., Junier, T., Jeanneret, N., Dorador, C., Molina, V., ... & Junier, P. (2016). A combination of extreme environmental conditions favor the prevalence of endospore-forming firmicutes. Frontiers in Microbiology, 7, 1707.
Gorelova, V., Ambach, L., Rébeillé, F., Stove, C., & Van Der Straeten, D. (2017). Folates in plants: research advances and progress in crop biofortification. Frontiers in Chemistry, 5, 21.
Green, E. R., & Mecsas, J. (2016). Bacterial secretion systems: an overview. Virulence Mechanisms of Bacterial Pathogens, 213-239.
Glassman, S. I., Weihe, C., Li, J., Albright, M. B. N., Looby, C. I., Martiny, A. C., Treseder, K. K., Allison, S. D., & Martiny, J. B. H. (2018). Decomposition responses to climate depend on microbial community composition. Proceedings of the National Academy of Sciences, 115, 11994–11999.
Hamman, S. T., Burke, I. C., & Stromberger, M. E. (2007). Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biology and Biochemistry, 39, 1703-1711.
He, T., & Lamont, B. B. (2018). Baptism by fire: The pivotal role of ancient conflagrations in evolution of the Earth’s flora. National Science Review, 5, 237–254.
Hendrickson, E. L., Plotnikova, J., Mahajan-Miklos, S., Rahme, L. G., & Ausubel, F. M. (2001). Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. Journal of Bacteriology, 183, 7126-7134.
Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiology and Molecular Biology Reviews, 66, 373-395.
Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Posner, R. G., Hucka, M., & Fontana, W. (2006). Rules for modeling signal-transduction systems. Science's STKE, 2006, re6-re6.
Honeker, L. K., Pugliese, G., Ingrisch, J., Fudyma, J., Gil-Loaiza, J., Carpenter, E., ... & Meredith, L. K. (2023). Drought re-routes soil microbial carbon metabolism towards emission of volatile metabolites in an artificial tropical rainforest. Nature Microbiology, 8, 1480-1494.
Hu, C., Zhao, S., Li, K., & Yu, H. (2019). Microbial degradation of nicotinamide by a strain Alcaligenes sp. P156. Scientific Reports, 9, 3647.
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119
Isobe, K., Otsuka, S., Sudiana, I., Nurkanto, A., & Senoo, K. (2009). Community composition of soil bacteria nearly a decade after a fire in a tropical rainforest in East Kalimantan, Indonesia. The Journal of General and Applied Microbiology, 55, 329-337.
Isobe, K., Allison, S. D., Khalili, B., Martiny, A. C., & Martiny, J. B. (2019). Phylogenetic conservation of bacterial responses to soil nitrogen addition across continents. Nature Communications, 10, 2499.
Jurburg, S. D., Nunes, I., Brejnrod, A., Jacquiod, S., Priemé, A., Sørensen, S. J., ... & Salles, J. F. (2017). Legacy effects on the recovery of soil bacterial communities from extreme temperature perturbation. Frontiers in Microbiology, 8, 1832.
Kaila, V. R., & Wikström, M. (2021). Architecture of bacterial respiratory chains. Nature Reviews Microbiology, 19, 319-330.
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51, D587-D592.
Kameshwar, A. K. S., Ramos, L. P., & Qin, W. (2019). CAZymes-based ranking of fungi (CBRF): an interactive web database for identifying fungi with extrinsic plant biomass degrading abilities. Bioresources and Bioprocessing, 6, 1-10.
Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16, 406–411.
Keeley JE (2012) Ecology and evolution of pine life histories. Annals of Forest Science 69, 445–453
Knelman, J. E., Schmidt, S. K., Garayburu-Caruso, V., Kumar, S., & Graham, E. B. (2019). Multiple, compounding disturbances in a forest ecosystem: fire increases susceptibility of soil edaphic properties, bacterial community structure, and function to change with extreme precipitation event. Soil Systems, 3, 40.
Larsbrink, J., & McKee, L. S. (2020). Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. Advances in Applied Microbiology, 110, 63-98.
Lehmann, A., Zheng, W., & Rillig, M. C. (2017). Soil biota contributions to soil aggregation. Nature Ecology & Evolution, 1, 1828–1835.
Li, J., Pei, J., Liu, J., Wu, J., Li, B., Fang, C., & Nie, M. (2021). Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global meta‐analysis. Global Change Biology, 27, 4196-4206.
Liu, Hsin-Ni (2022). Contrasting adaptation of two Pinus subgenera to fire is related to differences in needle-decomposing microbiome. Master’s Thesis, National Cheng Kung University.
Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177, 651-670.
Lucas-Borja, M. E., Miralles, I., Ortega, R., Plaza-Álvarez, P. A., Gonzalez-Romero, J., Sagra, J., ... & Heras, J. (2019). Immediate fire-induced changes in soil microbial community composition in an outdoor experimental controlled system. Science of the Total Environment, 696, 134033.
Malik, A. A., Martiny, J. B., Brodie, E. L., Martiny, A. C., Treseder, K. K., & Allison, S. D. (2020). Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME journal, 14, 1-9.
Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., & Zavala, L. M. (2011). Fire effects on soil aggregation: a review. Earth-Science Reviews, 109, 44-60.
Mayer, M., Prescott, C. E., Abaker, W. E., Augusto, L., Cécillon, L., Ferreira, G. W., ... & Vesterdal, L. (2020). Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, 466, 118127.
McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One, 8, e61217.
Mehdi, H., Ali, S., Ali, M., & Mostafa, A. (2012). Effects of different fire severity levels on soil chemical and physical properties in Zagros forests of western Iran.
Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H., & Martin, D. A. (2013). Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews, 122, 10-37.
Mukherjee, S., Mishra, A., & Trenberth, K. E. (2018). Climate change and drought: A perspective on drought indices. Current Climate Change Reports, 4, 145–163.
Nelson, A. R., Narrowe, A. B., Rhoades, C. C., Fegel, T. S., Daly, R. A., Roth, H. K., ... & Wilkins, M. J. (2022). Wildfire-dependent changes in soil microbiome diversity and function. Nature Microbiology, 7, 1419-1430.
Newton, G. L., Buchmeier, N., & Fahey, R. C. (2008). Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiology and Molecular Biology Reviews, 72, 471-494.
Pausas JG (2015) Evolutionary fire ecology: lessons learned from pines. Trends in Plan Science 20, 318–324.
Pei, J., Wan, J., Wang, H., Fang, C., Nie, M., & Li, J. (2023). Changes in the activity of soil enzymes after fire. Geoderma, 437, 116599.
Pellegrini, A. F., Harden, J., Georgiou, K., Hemes, K. S., Malhotra, A., Nolan, C. J., & Jackson, R. B. (2022). Fire effects on the persistence of soil organic matter and long-term carbon storage. Nature Geoscience, 15, 5-13.
Pérez-Valera, E., Verdú, M., Navarro-Cano, J. A., & Goberna, M. (2020). Soil microbiome drives the recovery of ecosystem functions after fire. Soil Biology and Biochemistry, 149, 107948.
Pourreza, M., Hosseini, S. M., Sinegani, A. A. S., Matinizadeh, M., & Dick, W. A. (2014). Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma, 213, 95-102.
Prendergast-Miller, M. T., De Menezes, A. B., Macdonald, L. M., Toscas, P., Bissett, A., Baker, G., ... & Thrall, P. H. (2017). Wildfire impact: Natural experiment reveals differential short-term changes in soil microbial communities. Soil Biology and Biochemistry, 109, 1-13.
Pressler, Y., Moore, J. C., & Cotrufo, M. F. (2019). Belowground community responses to fire: meta‐analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos, 128, 309-327.
Pulido‐Chavez, M. F., Randolph, J. W., Zalman, C., Larios, L., Homyak, P. M., & Glassman, S. I. (2023). Rapid bacterial and fungal successional dynamics in first year after chaparral wildfire. Molecular Ecology, 32, 1685-1707.
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35, 833–844
R Core Team (2020). RA language and environment for statistical computing, R Foundation for Statistical. Computing.
Rogers, B. M., Neilson, R. P., Drapek, R., Lenihan, J. M., Wells, J. R., Bachelet, D., & Law, B. E. (2011). Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. Journal of Geophysical Research, 116(G3).
Santín, C., Doerr, S. H., Preston, C. M., & González‐Rodríguez, G. (2015). Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global Change Biology, 21, 1621-1633.
Sieber, C. M., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature microbiology, 3, 836-843.
Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., ... & Chu, H. (2013). Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57, 204-211.
Shivlata, L., & Satyanarayana, T. (2015). Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Frontiers in microbiology, 6, 1014.
Singh, N., Abiven, S., Torn, M. S., & Schmidt, M. W. (2012). Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences, 9, 2847-2857.
Söllinger, A., Séneca, J., Borg Dahl, M., Motleleng, L. L., Prommer, J., Verbruggen, E., ... & Tveit, A. T. (2022). Down-regulation of the bacterial protein biosynthesis machinery in response to weeks, years, and decades of soil warming. Science Advances, 8, eabm3230.
Speirs, L. B., Rice, D. T., Petrovski, S., & Seviour, R. J. (2019). The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Frontiers in Microbiology, 10, 2015.
Spyratos, V., Bourgeron, P. S., & Ghil, M. (2007). Development at the wildlandurban interface and the mitigation of forest-fire risk. Proceedings of the National Academy of Sciences, 104, 14272–14276.
Stephens, S. L., Burrows, N., Buyantuyev, A., Gray, R. W., Keane, R. E., Kubian, R., Liu, S., Seijo, F., Shu, L., Tolhurst, K. G., & van Wagtendonk, J. W. (2014). Temperate and boreal forest mega-fires: Characteristics and challenges. Frontiers in Ecology and the Environment, 12, 115–122.
Takriti, M., Wild, B., Schnecker, J., Mooshammer, M., Knoltsch, A., Lashchinskiy, N., ... & Richter, A. (2018). Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology and Biochemistry, 121, 212-220.
Wadhwa, N., & Berg, H. C. (2022). Bacterial motility: machinery and mechanisms. Nature Reviews Microbiology, 20, 161-173.
Wang, L., Ye, X., Hu, H., Du, J., Xi, Y., Shen, Z., ... & Chen, D. (2021). Soil bacterial community triggered by organic matter inputs supports a high-yielding pear production. Soil Discussions, 2021, 1-25.
Wang, Q., Zhong, M., & Wang, S. (2012). A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. Forest Ecology and Management, 271, 91-97.
Wang, X., & Quinn, P. J. (2010). Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in Lipid Research, 49, 97-107.
Wang Y B, Zhao G Y, Zang S Y. (2017). Effects of human disturbance on soil carbon fractions and enzyme activities in forest wetlands of Xiaoxing'an Mountains. Acta Scientiae Circumstantiae, 37, 4757-4764.
Weber, C. F., Lockhart, J. S., Charaska, E., Aho, K., & Lohse, K. A. (2014). Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biology and Biochemistry, 69, 242-250.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science, 313, 940–943.
Whitman, T., Whitman, E., Woolet, J., Flannigan, M. D., Thompson, D. K., & Parisien, M.-A. (2019). Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biology and Biochemistry, 138, 107571.
Wickham, H., & Wickham, H. (2016). Data analysis. Springer International Publishing.
Wickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A Grammar of Data Manipulation. R package version 0.7. 6. Computer software]. https://CRAN. R-project. org/package= dplyr.
Woolet, J., & Whitman, T. (2020). Pyrogenic organic matter effects on soil bacterial community composition. Soil Biology and Biochemistry, 141.2019.107678. 107678.
Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., ... & Chu, H. (2012). Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14, 2457-2466.
Yusiharni, E., & Gilkes, R. (2012). Minerals in the ash of Australian native plants. Geoderma, 189, 369-380.
Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., Da Rocha, U. N., Shi, S., ... & Brodie, E. L. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3, 470-480.
校內:2029-07-29公開