簡易檢索 / 詳目顯示

研究生: 李國豪
Lee, Kuo-Hao
論文名稱: 化學氣相沈積法成長氮化鎵奈米線之材料特性與應用分析
Characterizations and Applications of GaN Nanowires Synthesized by Chemical Vapor Deposition
指導教授: 陳引幹
Chen, In-Gann
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 193
中文關鍵詞: 奈米線拉曼離子佈植
外文關鍵詞: nanowire, Raman, implant
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用金屬鎵與氨氣氣體做為反應物,搭配附著在矽基板上的鉑顆粒做為催化劑,在置於水平式高溫爐內的矽基板上利用化學氣相沈積反應,以固相液相氣相成長機制進行氮化鎵奈米線成長。實驗中,先以改變不同的反應壓力、氨氣氣體流量與成長溫度,做為選擇成長氮化鎵奈米線的實驗參數。實驗參數確定後,再透過搭配不同氣體流量比例的成長參數,觀察氣體流量比例變化對奈米線所產生的應力與電性表現的影響。此外,氮化鎵奈米線的成長製程亦將分別搭配矽基板在奈米金水溶液浸泡處理的實驗以及離子佈植劑量改變的實驗,用來做為奈米線線徑控制方法與觀察材料電子結構變化的分析。氮化鎵奈米線應用的部分,則是將上述不同氣體流量比例所成長的奈米線以及搭配電子束蒸鍍技術處理程序的奈米線,進行應用在場發射與表面增顯拉曼表現的分析。
    第一部份實驗,將以固定總氣體流量,改變不同反應氣氛(H2/NH3)流量比例,進行氮化鎵奈米線成長。並分別用拉曼量測與電流電壓曲線量測系統,分析不同反應氣氛流量比例對氮化鎵奈米線所產生的應力與電性變化的影響。拉曼量測結果顯示,反應過程中H2氣體流量比例變大時,奈米線晶體內會有壓縮應力現象產生; 電流電壓量測曲線結果顯示,反應過程中H2氣體流量比例變大時,奈米線的啟動電壓值也越來越大,原因是因為有大量的氫原子形成電子捕獲中心缺陷,造成啟動電壓值上升。而奈米線電阻值下降的原因,是因為有氮原子形成贈體缺陷與穿遂電流現象的產生。
    在第二部分,本實驗提供一種簡易快速的方式,控制催化劑粒徑大小,並利用催化劑尺寸的改進,進一步控制氮化鎵奈米線的成長線徑尺寸,藉以改善線徑分佈不均的情況。實驗結果顯示,透過電漿處理與浸泡奈米金水溶液的方式,我們可以在矽基板上控制金顆粒大小,其尺寸分佈標準差可以從未改善前的20 nm 縮小至改善後的8 nm; 而所對應成長的氮化鎵奈米線線徑尺寸分佈標準差可以從未改善前的35 nm縮小至改善後的10 nm。這結果顯示,電漿處理與浸泡水溶液的方式,可以分別減少催化劑粒徑與線徑的分佈差異。
    在第三部分,本實驗利用離子佈值技術,將不同銪離子劑量佈植於相同成長條件的氮化鎵奈米線。對於離子轟擊所產的點缺陷,以X光吸收光譜與光激發螢光光譜量測進行分析。X光吸收光譜分析結果顯示,離子轟擊後的氮化鎵奈米線,由於有氮插入型與氮懸鍵缺陷的形成,因此可以觀察到氮化鎵奈米線的電子躍遷軌域會從sp3為主的混成軌域逐漸轉向sp2混成軌域。當電子躍遷以sp2混成軌域為主時,會造成氮化鎵奈米線在光激發螢光光譜近能帶邊緣放射光強度減弱。氮插入型與氮懸鍵缺陷的X光吸收光譜強度隨著佈植劑量增加而上升的趨勢顯示,離子轟擊氮化鎵奈米線時,這些點缺陷特別容易形成。
    最後部分,則是利用氮化鎵奈米線進行應用在場發射與表面增顯拉曼方面的量測與分析。場發射的量測結果顯示,利用氮化鎵奈米線表面具有大量微小突起物的外型特徵,其場發射起始電場可以減少至8.5 V/μm; 場增強因子為315。這些微小奈米級的氮化鎵突起物可以作為巨大數量的場發射源,而這些場發射源整體的場發射表現會比單一尖細的場發射源效果更為優越。表面增顯拉曼的實驗結果顯示,利用電子束蒸鍍技術加熱金屬銀靶材,並搭配適當蒸鍍時間的改變,可以讓氮化鎵奈米線表面有不同的銀薄膜覆蓋率變化。將不同銀薄膜覆蓋率的氮化鎵奈米線浸泡在10-3 M的R6G測試溶液中進行表面增顯拉曼量測,其量測的變化趨勢顯示,隨著銀膜覆蓋率越高,表面增顯拉曼強度會逐漸變弱。電子顯微鏡觀察結果顯示,在表面增顯拉曼強度最強的試片中,其對應奈米線表面所覆蓋的銀膜是以圓球形的奈米顆粒外形呈現。這結果顯示圓球外形的奈米顆粒是有助於表面增顯拉曼的表現。在偵測R6G溶液濃度的量測中,實驗結果顯示R6G的最小偵測濃度可以到達10-12M。並且在10-3到10-12M濃度之間,表面增顯拉曼訊號的強度變化有隨R6G濃度變化呈現近似線性的變化趨勢。這趨勢顯示,有銀奈米顆粒附著的氮化鎵奈米線,具有作為表面增顯拉曼活性基板的應用潛力。

    In this study, we have used metallic Ga and NH3 gas to synthesize GaN nanowires on Pt catalyst coated Si substrate in a high temperature furnace by using the chemical vapor deposition process. The nanowire growth process was followed the vapor-liquid-solid growth mechanism. First of all, we change the reaction pressure, NH3 flow rate and temperature to grow GaN nanowires. When we have the optimum growth parameters, we change the flow ratio of the reaction gas to characterize the generation of stress and current-voltage properties for synthesized nanowires. In order to demonstrate an easy method of controlling the diameter of GaN nanowires and characterize the electronic structure of as-implanted GaN nanowires, the GaN nanowires growth processes were also treated with Si substrate immersed in Au nanoparticle solution and ion implantation experiments, respectively. For the application field, the GaN nanowires which were grown in different flowing ratio and treated with electron beam evaporation method were characterized by the field emission and surface enhanced Raman scattering measurements, respectively.
    For the first experiment, we keep the constant total flow rate of the reaction gas and changed the flow ratio of H2/NH3 to grow GaN nanowires. Raman analysis shows that as the H2/NH3 ratio increased, the H2 atom relaxation phenomenon was generated in the crystal structure and lead to compressive stress. The results of current-voltage measurement reveal that as the H2/NH3 ratio increased, the threshold voltage increased. This result is caused by the formation of H2 related electron defect trap centers. When H2/NH3 ratio increases, the resistances of nanowire is decreasing. The reason should be attributed to the formation of donor like defect for nitrogen defect and tunneling current behavior.
    For the second experiment, we demonstrate an easy and fast method of controlling the average diameter of Au nanoparticles and GaN nanowires. The experimental results reveal that the plasma exposure and immersion treatments can be used to control the diameter of nanoparticle and nanowires. After the above experiments, the Au nanoparticles diameter has the standard deviation (SD) of 8 nm, which is much lower than the previous size (20 nm). The GaN nanowires have the SD of 10 nm, which is much lower than the previous size (35 nm). This result shows that both of the plasma exposure and immersion treatments are effective to reduce the diameter difference between nanoparticle and nanowires
    For the third experiment, Eu ions were implanted on GaN nanowires with fluence from 1013 to 1015 cm-2. The defects which were created by ion bombardment were analyzed by the X-ray absorption spectroscopy and photoluminescence measurement. X-ray absorption spectroscopy analysis show the formations of nitrogen interstitials and dangling bond defects within as-implanted GaN nanowires and the transformation of electron transition from sp3 to sp2 environment. When the electron transition is dominated in sp2 environment, the emission intensity of photoluminescence is decreasing. The increase of the X-ray absorption intensity of nitrogen interstitials and dangling bond defects signals reveal that these nitrogen related defects were easily created by ion bombardment.
    For the field emission property of the GaN nanowires, the measurement results reveal that when nano-size protrusions were formed on the surface of the nanowires, the turn on field could be decreased to 8.5 V/μm and its corresponding enhanced factor was 315. The observations suggest that the nanoscale GaN protrusions can act as multiple field emission sources that provide better overall field emission performance than that of a single sharp tip.
    For the surface enhanced Raman scattering (SERS) performance, our analysis show that the e-beam evaporation method can be used to control the Ag coverage on surface of the GaN nanowires. When GaN nanowires with different Ag deposition thickness were immersed in the R6G (10-3M), the SERS measurements reveal that the SERS intensity is decreasing with the increasing of the Ag deposition thickness. Transmission electron microscopy images reveal that the shape of the Ag deposition can be divided into circle shape and irregular island shape. The circle shape of Ag nanoparticle is suitable for the SERS performance. Moreover, SERS measurement indicates that the R6G concentration of 10-12M can be detected. The relationship between SERS intensity and R6G concentration also suggests that GaN nanowires decorated with Ag nanoparticles can be a potential active substrate in the field of bio-materials.

    中文摘要 I Abstract IV 誌謝 VII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 序論 1 第二章 文獻回顧與研究背景 3 2.1氮化鎵材料發展過程與應用 3 2.1.1氮化鎵材料的發展過程 3 2.1.1.1 氮化鎵材料的性質 4 2.1.2 氮化鎵材料的應用 6 2.2 奈米材料介紹 8 2.2.1 奈米材料成長機制 8 2.2.2 由上而下(top-down)成長技術 15 2.2.3 由下而上(bottom up)成長技術 18 2.2.4奈米元件的發展 20 2.3 氮化鎵奈米線的研究背景 24 2.4 離子佈植法佈植半導體奈米線的介紹與研究背景 29 2.4.1 離子佈植法介紹 29 2.4.2 研究背景 29 2.5場發射介紹與研究背景 33 2.5.1 場發射介紹 33 2.5.2 場發射研究背景 35 2.6 表面增顯拉曼散射介紹與研究背景 37 2.6.1 拉曼光譜介紹 37 2.6.1.1 拉曼光譜散射之理論 38 2.6.1.2 拉曼光譜散射之量子理論 40 2.6.2 表面增顯拉曼光譜介紹 41 2.6.2.1表面增強拉曼光譜原理簡介 41 2.6.3 表面增顯拉曼散射研究背景 42 第三章 實驗系統與分析儀器 73 3.1 實驗系統 73 3.1.1 化學氣相沈積實驗步驟 75 3.2 實驗分析儀器 76 3.2.1 掃描式電子顯微鏡 76 3.2.2 低掠角X光薄膜繞射儀 76 3.2.3 微拉曼光譜儀 77 3.2.4 光激發螢光譜儀 79 3.2.5 化學分析電子光譜儀 80 3.2.6 場發射量測儀 81 3.2.7 穿透式電子顯微鏡 82 3.2.8 電流-電壓電性量測 82 3.2.9 X光吸收光譜量測 82 3.2.10 核磁共振光譜儀 84 第四章 實驗結果與討論 89 4.1 不同反應壓力、氣體流量與反應溫度對氮化鎵奈米線成長影響 89 4.1.1前言 89 4.1.2 實驗方法:改變成長壓力 90 4.1.2.1 結果與分析 90 4.1.3實驗方法:改變氣體流量 91 4.1.3.1結果與分析 91 4.1.4 實驗方法:改變成長溫度 91 4.1.4.1 結果與分析 92 4.2 以拉曼散射光譜與電流電壓量測技術分析氮化鎵奈米線所產生的應力與氮空缺 94 4.2.1 前言 94 4.2.2 實驗方法 95 4.2.3 結果與討論 96 4.2.3.1 拉曼光譜量測分析 96 4.2.3.2 電流電壓量測分析 99 4.2.4 結論 101 4.3 在電漿活化的矽基板上,利用金奈米顆粒改善成長氮化鎵奈米線線徑 控制效果 101 4.3.1 前言 101 4.3.2 實驗方法 102 4.3.3 結果與討論 105 4.3.3.1 化學位移分析 105 4.3.3.2 金顆粒粒徑大小分析 106 4.3.3.3 金顆粒粒徑與奈米線線徑分析 107 4.3.3.4 奈米線晶體結構分析 108 4.3.4 結論 109 4.4 利用X光吸收光譜與光激發螢光光譜分析氮化鎵奈米線的氮插入與氮懸鍵點缺陷 110 4.4.1 前言 110 4.4.2 實驗方法 111 4.4.3 結果與討論 112 4.4.3.1 材料結構與光學分析 112 4.4.3.2 X光吸收光譜分析 113 4.4.4 結論 116 4.5 奈米級突起物對氮化鎵奈米線場發射特性的影響 116 4.5.1 前言 116 4.5.2 實驗方法 117 4.5.3 結果與討論 118 4.5.3.1 表面形貌分析 118 4.5.3.2. 晶體結構分析 119 4.5.3.3 場發射量測分析 120 4.5.4 結論 122 4.6 氮化鎵奈米線應用在表面增顯拉曼量測的分析 123 4.6.1 前言 123 4.6.2 實驗方法 124 4.6.3 結果與討論 125 4.6.3.1晶體結構分析 126 4.6.3.2 表面形貌分析 126 4.6.3.3 銀膜蒸鍍厚度對氮化鎵奈米線表面銀覆蓋率與表面增顯拉曼強度的變化 127 4.6.3.4 不同R6G濃度對表面增顯拉曼的影響 128 4.6.4 結論 129 第五章 結論 168 參考文獻 171

    1. W. C. Johnson, J. B. Parsons and M. C. Crew, "Nitrogen compounds of Gallium" J. Phys. Chem. 36, 251 (1932).
    2. H. P. Maruska and J. J. Tietjen, "The preparation and properties of vapor-deposited single-crystalline GaN" Appl. Phys. Lett. 15, 327 (1969).
    3. J. J. Pankove, E. A. Miller, D. Richman and J. E. Berkeyheister, "GaN electroluminescence diodes" RCA Review 32 (3), 383 (1971).
    4. H. P. Maruska, D. A. Stevenson and J. J. Pankove, "Violet luminescence of Mg doped GaN" Appl. Phys. Lett. 22 (6), 303 (1973).
    5. J. J. Pankove and J. A. Hutchby, "Photoluminescence of ion implanted GaN" J. Appl. Phys. 47 (12), 5387 (1976).
    6. S. Yoshida, S. Misawa and S. Gonnda, "Epitaxial growth of GaN/AlN heterostructures" J. Vac. Sci. Technol. B 1, 250 (1983).
    7. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer" Appl. Phys. Lett. 48, 353 (1986).
    8. S. Nakamura, Y. Harada and M. Seno, "Novel metalorganic chemical vapor deposition system for GaN growth" Appl. Phys. Lett. 58, 2021 (1991).
    9. H. Amano, M. Kitoh, K. Hiramatsu, N. Sawaki and I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)" Jpn. J. Appl. Phys. 28, L2112 (1989).
    10. S. Nakamura and T. Mukai, "High-quality InGaN films grown on GaN films" Jpn. J. Appl. Phys. 31, L1457 (1992).
    11. S. Nakamura, M. Senoh and T. Mukai, "Highly ptype Mg-doped GaN films grown with buffer layers" Jpn. J. Appl. Phys. 30, L1708 (1991).
    12. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, "InGaN based multi quantum well structure laser diodes" Jpn. J. Appl. Phys. 35, 74 (1996).
    13. M. Mizuta, S. Fujieda, Y. Matsumoto and T. Kawamura, "Low temperature growth of GaN and AlN on GaAs utilizing metalorganics and hydrazine" Jpn, J. Appl. Phys. 25, L945 (1986).
    14. M. J. Paisley, Z. Sitar, J. B. Posthill and R. F. Favis, "Growth of cubic phase gallium nitride by modified molecular-beam epitaxy" J. Vac. Sci. Technol. A 7, 701 (1989).
    15. R. C. Powell, N. E. Lee, Y. W. Kim and J. E. Greene, "Heteroepitaxy wurtzite and aincblende structure GaN grown by reactive ion molecular beam epitaxy-growth kinetics, microstructure, and properties" J. Appl. Phys. 73, 189 (1993).
    16. V. A. Savastenko and A. U. Sheleg, "Study of the elastic properties of gallium nitride" Phys. Status. Solidi A 48, K135 (1978).
    17. T. Detchprohm, K. Hiramatsu, K. Itoh and I. Akasaki, "Relaxation process of the thermal strain in the GaN/α-Al2O3 heterostructure and determination of the intrinsic lattice constants of GaN free from the strain" Jpn, J. Appl. Phys. 31, L1454 (1992).
    18. S. Sanna, Thermochemical Properties of Inorganic Substances. Springer, Berlin-Heidelberg-New York, USA, 1977.
    19. J. Karpinski and S. Porowski, "High pressure thermodynamic of GaN" J. Cryst. Growth 66, 11 (1984).
    20. J. Karpinski, J. J. and S. Porowski, "Equilibrium pressure of N2 over GaN and high pressure soluition growth of GaN" J. Cryst. Growth 66, 1 (1984).
    21. E. Lakshmi, B. Mathur, A. B. Bhattacharya and V. P. Bhargava, "The growth of highly resistive gallium nitride films" Thin Solid Films 74, 77 (1980).
    22. B. C. Chung and M. Hershenzon, "The influence of oxygen on the electrical and optical properties of GaN crystals grown by metalorganic vapor phase epitaxy" J. Appl. Phys. 72, 651 (1992).
    23. T. Lei and T. D. Moustakas, "Epitaxial growth and characterization of zincblende gallium nitride on (001) sisicon" J. Appl. Phys. 71, 4933 (1992).
    24. H. J. Hovel and J. J. Cuomo, "Electrical and optical properties of RF-sputtered GaN and InN" Appl. Phys. Lett. 20 (2), 71 (1972).
    25. B. B. Kosicki, R. J. Powell and J. C. Burgiel, "Optical absorption and vacuum-ultraviolet reflectance of GaN thin films" Phys. Rev. Lett. 24, 1421 (1970).
    26. S. Bloom, G. Harbeke, E. Meier and I. B. Ortenburger, "Band structure and reflectivity of GaN" Phys. Status Solidi B-Basic Solid State Phys. 66, 161 (1974).
    27. J. Hagen, R. Metcalfe, D. Wickendon and W. Clark, "Growth and properties of GaxAl1-xN compounds" J. Phys. C 11, L143 (1978).
    28. B. Baranov, L. Daweritz, V. Gutan, G. Jungk, H. Neumann and H. Raidt, "Growth and properties of AlxGa1-xN epitaxial layers" Phys. Status Solidi A-Appl. Mat. 49, 629 (1978).
    29. S. Yoshida, S. Misawa and S. Gonnda, "Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy" J. Appl. Phys. 53, 6844 (1982).
    30. E. Koide, H. Itoh, M. R. H. Khan, K. Hiramatu, N. Sawaki and I. Akasaki, "Energy band gap bowing parameter in an AlxGa1-xN alloy" J. Appl. Phys. 61, 4540 (1987).
    31. S. Strite and H. Morkoc, "GaN, AlN and InN-A review" J. Vac. Sci. Technol. B 10, 1237 (1992).
    32. M. Panish and H. Temkin, Gas Source Molecular Beam Epitaxy. Speinger series in Material Science, Berlin, 1993.
    33. S. Keller, B. Keller, D. Japolnek, A. Abare, H. Masui, L. Colder, U. Mishar and S. DenBaars, "Growth and characterization of bulk InGaN films and quantum wells " Appl. Phys. Lett. 68, 3147 (1996).
    34. I. H. Ho and G. B. Stringfellow, "Solid phase immiscibility in GaInN" Appl. Phys. Lett. 69, 2701 (1996).
    35. K. Osamura, S. Naka and Y. Murakmi, "Preparation and optical properties of Ga1-xInXN thin films" J. Appl. Phys. 46, 3432 (1975).
    36. T. Nagatomo, T. Kuboyama, H. Minamino and O. Omoto, "Properties of Ga1-xInxN films prepared by MOVPE" Jpn. Appl. Phys. 28, L1334 (1989).
    37. N. Yoshimoto, T. MAstsuoka, T. Sasaki and A. Katsui, "Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy" Appl. Phys. Lett. 59, 2251 (1991).
    38. T. Matsuoka, N. Yoshimoto, T. Sasaki and A. Katsui, "Wide-gap semiconductor InGaN and InGaAlN grown by MOVPE" J. Electron. Mater. 21, 157 (1992).
    39. Y. Nakamura, A. Masada and M. Ichikawa, "Quantum-confinement effect in individual Ge1-xSnx quantum dots on Si(111) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy" Appl. Phys. Lett. 91 (1), 013109 (2007).
    40. X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles and J. L. Goldman, "High-performance thin-film transistors using semiconductor nanowires and nanoribbons " Nature 425, 274 (2003).
    41. P. J. Pauzauskie, A. ERadenovic, E. Trepagnier, H. Shroff, P. Yang and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water " Nat. Mater. 5 (2), 97 (2006).
    42. A. L. Schmitt, J. M. Higgins and S. Jin, "Chemical synthesis and magnetotransport of magnetic semiconducting Fe(1-x)Co(x)Sialloy nanowires " Nano Lett. 8 (3), 810 (2008).
    43. Y. L. Chueh, C. H. Hsieh, M. T. Chang, L. J. Chou, C. S. Lao, J. H. Song, J. Y. Gan and Z. L. Wang, "RuO2 nanowires and RuO2/TiO2 core/shell nanowires: From synthesis to mechanical, optical, electrical, and photoconductive properties " Adv. Mater. 19 (1), 143 (2007).
    44. D. Appell, "Nanotechnology: Wired for success " Nature 419, 553 (2002).
    45. R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth" Appl. Phys. Lett. 4 (5), 89 (1964).
    46. J. T. Hu, T. W. Odom and C. M. Lieber, "Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes " Accounts Chem. Res. 32 (5), 435 (1999).
    47. Z. L. Wang, Nanowires and nanoblets/ 1 Metal and semiconductire nanowire. Springer, Boston, 2003.
    48. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Fang, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, "陳新鎰 diode laser舉例" Science 292 (2001).
    49. R. Muhammad, Z. Othaman, S. Sakrani and Y. Wahab, "Vapor liquid solid mechanism using gold colloids for the growth of GaAs nanowires" J. Fund. Sci. 4, 363 (2008).
    50. R. Q. Zhang, Y. Lifshitz and S. T. Lee, "Oxide-assisted growth of semiconducting nanowires " Adv. Mater. 15 (7-8), 635 (2003).
    51. J. Y. Li, Q. Zhang, H. Peng, H. O. Everitt, L. Qin and J. Liu, "Diameter-Controlled Vapor-Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays " J. Phys. Chem. C 113 (10), 3950 (2009).
    52. H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho and K. S. Chung, "Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy " Appl. Phys. Lett. 81 (12), 2193 (2002).
    53. P. A. Hu, Y. Liu, L. Fu, L. Cao and D. Zhu, "Self-assembled growth of ZnS nanobelt networks " J. Phys. Chem. B 108 (3), 936 (2004).
    54. R. B. Wu, B. Li, M. Gao, J. Chen, Q. Zhu and Y. Pan, "Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties " Nanotechnology 19 (33), 335602 (2008).
    55. H. Chik, J. Liang, S. G. Cloitier, N. Louklin and J. M. Xu, "Periodic array of uniform ZnO nanorods by second-order self-assembly " Appl. Phys. Lett. 84 (17), 3376 (2004).
    56. N. I. Kovtyukhova, T. E. Mallouk and T. S. Mayer, "Templated surface sol-gel synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires " Adv. Mater. 15 (10), 780 (2003).
    57. X. J. Xu, G. T. Fei, W. H. Yu, X. W. Wang, L. Chen and L. D. Zhang, "Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method " Nanotechnology 17 (2), 426 (2006).
    58. L. Liu, W. Lee, Z. Huang, R. Scholz and U. Gosele, "Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane " Nanotechnology 19 (33), 335604 (2008).
    59. Y. H. Cheng and S. Y. Cheng, "Nanostructures formed by Ag nanowires " Nanotechnology 15 (1), 171 (2004).
    60. M. Qu, G. Zhao, Q. Wang, X. Cao and J. Zhang, "Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates " Nanotechnology 19 (5), 055707 (2008).
    61. X. H. Li, W. M. Liu and H. L. Li, "Template synthesis of well-aligned titanium dioxide nanotubes " Appl. Phys. A-Mater. Sci. Process. 80 (2), 317 (2005).
    62. J. B. Yi, H. Pan, J. Y. Lin, J. Ding, Y. P. Feng, S. Thongmee, T. Liu, H. Gong and L. Wang, "Ferromagnetism in ZnO nanowires derived from electro-deposition on AAO template and subsequent oxidation " Adv. Mater. 20 (6), 1170 (2008).
    63. H. Zhang, X. Ma, J. Xu, J. Niu, J. Sha and D. Yang, "Directional CdS nanowires fabricated by chemical bath deposition " J. Cryst. Grwoth 246 (1-2), 108 (2002).
    64. J. R. Heath and F. K. LeGoues, "A liquid solution synthesis of single-crystal germanium quantum wires" Chem. Phys. Lett. 208 (3-4), 263 (1993).
    65. T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang and A. M. Beatty, "Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: Elucidation of molecular and nonmolecular components of the pathway " J. Am. Chem. Soc. 119 (9), 2172 (1997).
    66. J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, "Control of thickness and orientation of solution-grown silicon nanowires " Science 287 (54-57), 1471 (2000).
    67. N. Petkov, P. Birjukovs, R. Phelan, M. A. Morris, D. Erts and J. D. Holmes, "Growth of ordered arrangements of one-dimensional germanium nanostructures with controllable crystallinities " Chem. Mater. 20 (5), 1902 (2008).
    68. P. Falcaro, S. Costacurta, L. Malfatti, M. Takahashi, T. Kidchob, M. F. Casula, M. Piccinini, A. Marcelli, B. Marmiroli, H. Amenitsch, P. Schiavuta and P. Innocenzi, "Fabrication of mesoporous functionalized arrays by integrating deep X-ray lithography with dip-pen writing " Adv. Mater. 20 (10), 1864 (2008).
    69. L. Bremer, R. Tuinier and S. Jahromi, "High Refractive Index Nanocomposite Fluids for Immersion Lithography " Langmuir 25 (4), 2390 (2009).
    70. T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy and M. Rothschild, "22-nm immersion interference lithography " Opt. Express 14 (14), 6434 (2006).
    71. J. Joo, B. Y. Chow and J. M. Jacobson, "Nanoscale patterning on insulating substrates by critical energy electron beam lithography " Nano Lett. 6 (9), 2021 (2006).
    72. V. Raffa, O. Vittorio, V. Pensabene, A. Menciassi and P. Dario, "FIB-nanostructured surfaces and investigation of bio/nonbio interactions at the nanoscale " IEEE Trans. Nanobiosci. 7 (1), 1 (2008).
    73. http://www.aph.uni-karlsruhe.de/wegener/?id=31.
    74. http://fibics.com/FIBBasics.html.
    75. http://www.nrel.gov/pv/measurements/dualbeam_sample.html.
    76. C. Y. Nam, D. Tham and J. E. Fisher, "Disorder effects in focused-lon-beam-deposited pt contacts on GaN nanowires " Nano Lett. 5 (10), 2029 (2005).
    77. http://ppt.cc/U_X0.
    78. N. Arimitsu, A. Nakajima, Y. Kameshima, Y. Shibayama, H. Ohsaki and K. Okada, "Preparation of cobalt-titanium dioxide nanocomposite films by combining inverse micelle method and plasma treatment " Mater. Lett. 61 (11-12), 2173 (2007).
    79. M. Nath and B. A. Parkinson, "A simple sol-gel synthesis of superconducting MgB2 nanowires " Adv. Mater. 18 (14), 1865 (2006).
    80. J. Liu and J. C. Berg, "An aqueous sol-gel route to prepare organic-inorganic hybrid materials " J. Mater. Chem. 17 (41), 4430 (2007).
    81. K. Bayer, K. A. Dick, T. J. Krinke and K. Deppert, "Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotrees " J. Nanopart. Res. 9 (6), 1211 (2007).
    82. T. Deshler, "A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol " Atmos. Res. 90 (2-4), 223 (2008).
    83. X. Chen, J. Xu, R. M. Wang and D. Yu, "Versatile nanopatterned surfaces generated via three-dimensional colloidal crystals " Adv. Mater. 15 (5), 419 (2003).
    84. I. I. Vlasov, O. I. Lebedev, V. G. Ralchenko, E. Goovaerts, G. Bertoni, G. VanTendeloo and V. I. Konov, "Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition " Adv. Mater. 19 (22), 4058 (2007).
    85. T. Hanrath and B. A. Korgel, "Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals " Adv. Mater. 15 (5), 437 (2003).
    86. A. A. Ali, "New generation of super absorber nano-fibroses hybrid fabric by electro-spinning " J. Mater. Process. Technol. 199 (1), 193 (2008).
    87. Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits and G. D. Stucky, "Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays " Nano Lett. 4 (12), 2337 (2004).
    88. Y. Song, R. M. Garcia, R. M. Dorin, H. Wang, Y. Qiu, E. N. Coker, W. A. Steen, J. E. Miller and J. A. Shelnut, "Synthesis of platinum nanowire networks using a soft template " Nano Lett. 7 (12), 3650 (2007).
    89. A. F. Ismail, P. S. Goh, J. C. Tee, S. M. Sanip and M. Aziz, "A review of purification techniques for carbon nanotubes" Nano 3 (3), 127 (2008).
    90. E. Lind, A. I. Persson, L. Samuelson and L. E. Wernersson, "Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor " Nano Lett. 6 (9), 1842 (2006).
    91. S. A. Dayeh, D. P. R. Aplin, X. Zhou, P. K. L. Yu and E. T. Yu, "High electron mobility InAs nanowire field-effect transistors " Small 3 (2), 326 (2007).
    92. X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li and C. M. Lieber, "InAs/InP radial nanowire heterostructures as high electron mobility devices " Nano Lett. 7 (10), 3214 (2007).
    93. Y. Huang, X. Duan and C. M. Lieber, "Nanowires for integrated multicolor nanophotonics " Small 1 (1), 142 (2005).
    94. K. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays " Nano Lett. 4 (6), 1059 (2004).
    95. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. MNing, M. K. Sunkara and M. Meyyappan, "Near-infrared semiconductor subwavelength-wire lasers " Appl. Phys. Lett. 88 (16), 163115 (2006).
    96. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. russo and P. Yang, "Room-temperature ultraviolet nanowire nanolasers " Science 292 (5523), 1897 (2001).
    97. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally, "Single gallium nitride nanowire lasers " Nat. Mater. 1 (2), 106 (2002).
    98. X. Duan, Y. Huang, R. Agarwal and C. M. Lieber, "Single-nanowire electrically driven lasers " Nature 421, 241 (2003).
    99. J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz and S. T. Lee, "Room-temperature single nanoribbon lasers " Appl. Phys. Lett. 84 (7), 1189 (2004).
    100. F. Qian, Y. Li, S. Gradecak, H. G. PArk, Y. Dong, Y. Ding, Z. L. Wang and C. M. Lieber, "Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers " Nat. Mater. 7 (9), 701 (2008).
    101. Y. Zhang, H. Wang and A. Mascarenhas, "Quantum coaxial cables for solar energy harvesting " Nano Lett. 7 (5), 1264 (2007).
    102. B. M. Kayes, H. A. Atwater and N. S. Lewis, "Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells " J. Appl. Phys. 97 (11), 114302 (2005).
    103. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, "Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction " Nature 449 (7164), 885 (2007).
    104. W. Han, S. Fan, Q. Li and Y. Hu, "Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction " Science 277, 1287 (1997).
    105. G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo and Y. Q. Mao, "Large-scale synthesis of single crystalline gallium nitride nanowires" Appl. Phys. Lett. 75 (16), 2455 (1999).
    106. H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang and Y. H. Cho, "Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy" Appl. Phys. Lett. 81 (12), 2193 (2002).
    107. J. Goldberger, R. He, Y. Zhang, S. T. Lee, H. Yan, H. J. Choi and P. Yang, "Single-crystal gallium nitride nanotubes" Nature 422, 599 (2003).
    108. H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee and S. T. Lee, "Bulk-quality GaN nanowires synthesized from hot filament chemical vapor deposition" Chem. Phys. Lett. 327, 263 (2000).
    109. K. Kawasaki, I. Nakamatsu, H. Hirayma, K. Tsutsui and Y. Aoyagi, "Formation of GaN nanopillars by selective area growth using ammonia gas source molecular beam epitaxy" J. Cryst. Growth 243, 129 (2002).
    110. K. Kusakabe, A. Kikuchi and K. Kishino, "Characterization of Overgrown GaN Layers on Nano-Columns Grown by RF-Molecular Beam Epitaxy" Jpn. J. Appl. Phys. 40, L192 (2001).
    111. C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang and T. H. Hsueh, "Gallium Nitride Nanorods Fabrication by Inductively Coupled Plasma Reactive Ion Etching" Jpn. J. Appl. Phys. 41, L910 (2002).
    112. S. Hersee, X. sun and X. Wang, "The controlled growth of GaN nanowires " Nano Lett. 6 (8), 1808 (2006).
    113. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijer, A. V. D. Hart, T. Stoica and H. Luth, "Size-dependent Photoconductivity in MBE-Grown GaN Nanowires" Nano Lett. 5 (5), 981 (2005).
    114. Y. F. Chen, I. Stevenson, R. Pouy, L. Wang, D. N. McIlory, T. Pounds, N. G. Norton and D. E. Aston, "Mechanical elasticity of vapour-liquid-solid grown GaN nanowires " Nanotechnology 18, 135708 (2007).
    115. Z. Wang, X. Zu, F. Gao, W. J. Weber and J. P. Crocombette, "Atomistic simulation of the size and orientation dependences of thermal conductivity in GaN nanowires " Appl. Phys. Lett. 90, 161923 (2007).
    116. W. S. Su, Y. F. Chen, C. L. Hsiao and L. W. Tu, "Generation of electricity in GaN nanorods induced by piezoelectric effect " Appl. Phys. Lett. 90, 063110 (2007).
    117. B. Ha, H. C. Lkim, S. G. Kang and Y. H. Kim, "Synthesis and characterization of heterostructured Mn3GaN0.5/GaN nanowires" Chem. Mater. 17, 5398 (2005).
    118. M. H. Ham, D. K. Oh and J. M. Myoung, "Transport properties in (Ga,Mn)N nanowire field-effect transistors " J. Phys. Chem. C 111, 11480 (2007).
    119. E. Oh, J. H. Choi, H. K. Seong and H. J. Choi, "Optical properties of GaN and GaMnN nanowires grown on sapphire substrates " Appl. Phys. Lett. 89, 092109 (2006).
    120. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom and C. M. Lieber, "Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors " Nano Lett. 6 (7), 1468 (2006).
    121. F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet and C. M. Lieber, "Gallium nitride-based nanowire radial heterostructures for nanophotonics " Nano Lett. 4 (10), 1975 (2004).
    122. H. Y. Cha, H. Wu, S. Chae and M. G. Spencer, "Gallium nitride nanowire nonvolatile memory device" J. Appl. PHys. 100, 024307 (2006).
    123. A. Motayed, A. V. Davydov, M. He, S. N. Mohammad and J. Melngailis, "365 nm operation of n-nanowire/p-gallium nitride homojunction light emitting diodes " Appl. Phys. Lett. 90, 183120 (2007).
    124. B. S. Simpkins, K. M. McCoy, L. J. Whitman and P. E. Prhrsson, "Fabrication and characterization of DNA-functionalized GaN nanowires " Nanotechnology 18, 355301 (2007).
    125. R. S. Chen, C. Y. Lu, K. H. Chen and L. C. Chen, "Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN nanowires " Appl. Phys. Lett. 95, 233119 (2009).
    126. R. G. Elliman, A. R. wilkinson, T. Kim, P. Sekhar and S. Bhansali, "Ion beam synthesis and doping of photonic nanostructures " Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 266, 1362 (2008).
    127. H. W. Wu, C. J. Tsai and L. J. Chen, "Room temperature ferromagnetism in Mn+ implanted Si nanowires" Appl. Phys. Lett. 90 (4), 043121 (2007).
    128. D. Stichtenoth, D. Schwen, S. Muller, C. Borchers and C. Ronning, "Optical activation of implanted impurities in ZnS nanowires " J. Vac. Sci. Technol. A 24 (4), 1356 (2006).
    129. S. Dhara, J. J. Wu, G. Mangamma, S. Bera, C. T. Wu, P. Magudapathy, C. C. Yu, M. Kamruddin and K. G. M. Nair, "Long range ferromagnetic ordering at room temperature in Co+ implanted TiO2 nanorods" Nanotechnology 18, 325705 (2007).
    130. L. C. Chen, T. Niebling, W. Heimbrodt, D. Stichtenoth, C. Ronning and P. J. Klar, "Dimensional dependence of the dynamics of the Mn 3d(5) luminescence in (Zn, Mn)S nanowires and nanobelts " Phys. Rev. B 76, 115325 (2007).
    131. D. Stichtenoth, K. Wegener, C. Gutsche, I. Regolin, F. J. tegude, W. Prost, M. Seibt and C. Ronning, "P-type doping of GaAs nanowires" Appl. Phys. Lett. 92 (16), 163107 (2008).
    132. K. Ip, R. M. frazier, Y. W. Heo, D. P. Norton, C. R. Abernathy, S. J. Pearton, J. Kelly, R. Rairigh and A. F. Hebard, "Ferromagnetic in Mn- and Co-implanted ZnO nanorods" J. Vac. Sci. Technol. B 21 (4), 1476 (2003).
    133. D. Weissenberger, M. durrschnabel, D. Gerthsen, F. Perez-Willard, A. Reiser, G. M. Prinz, M. Feneberg, K. Thonke and R. Sauer, "Conductivity of single ZnO nanorods after Ga implantation in a focused-ion-beam system " Appl. Phys. Lett. 91 (13), 132110 (2007).
    134. J. Wang, M. J. Zhou, S. K. Hard, Q. Li, D. Tang, M. W. Chu and C. H. Chen, "Local electronic structure and luminexcence properties of Er doped ZnO nanowires" Appl. Phys. Lett. 89, 221917 (2006).
    135. L. Liao, J. C. Li, D. F. Wang, C. Liu, M. Z. Peng and J. M. Zhou, "Size dependence of Curie temperature in Co+ ion implanted ZnO nanowires " Nanotechnology 17 (3), 830 (2006).
    136. E. Schlenker, A. Bakin, H. Schmid, W. Maer, S. Sievers, M. Albercht, C. Ronning, S. Muller, M. Al-Suleiman, B. Postel, H. H. Wehmann, U. Siegner and A. Wagg, "Properties of V-implanted ZnO nanorods " Nanotechnology 18 (12), 125609 (2007).
    137. S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, Y. L. Wang, L. C. Chen, C. W. Hsu, H. M. Lin and C. C. Chen, "Enhanced dynamic annealing in Ga+ ion implanted GaN nanowires" Appl. Phys. Lett. 82 (3), 451 (2003).
    138. A. Datta, S. Dhara, S. Muto, C. W. Hsu, C. T. Wu, C. H. Shwn, T. Tanabe, T. Matuyama, K. H. Chen, L. C. Chen and Y. L. Wang, "Formation and in situ dynamics of metallic nanoblisters in Ga+ implanted GaN nanowires" Nanotechnology 16, 2764 (2005).
    139. S. Dhara, A. Datta, C. T. Wu, K. H. Chen, Y. L. Wang, S. Muto, T. Tanabe, C. H. Shen, C. W. Hsu, L. C. Chen and T. Maruyama, "Mechanism of nanoblister formation in Ga+ self-ion implanted GaN nanowires " Appl. Phys. Lett. 86 (20), 203119 (2005).
    140. S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, Y. L. Wang, Y. F. Chen, C. W. Hsu, L. C. Chen, H. M. Lin and C. C. Chen, "Blueshift of yellow luminescence band in self-ion-implanted n-GaN nanowire " Appl. Phys. Lett. 84 (18), 3486 (2004).
    141. S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, Y. L. Wang, C. W. Hsu, C. H. Shen, L. C. Chen and C. C. Chen, "Hexagonal-to-cubic phase transformation in GaN nanowires by Ga+ implantation " Appl. Phys. Lett. 84 (26), 5473 (2004).
    142. E. L. Murphy and R. H. Good, "Thermionic Emission, Field Emission, and the Transition Region" Phys. Rev. 102 (6), 1464 (1956).
    143. L. W. Nordheim, "The effect of the image force on the emission and reflection of electrons by metals" Proc. R. Soc. (London) A121, 626 (1928).
    144. K. R. Shoulder, "Microelectronics Using Electron-Beam-Activated Machining Techniques" Adv. Comp. 2, 135 (1961).
    145. C. Spindt, "A thin film field emission cathode" J. Appl. Phys. 39 (7), 3504 (1968).
    146. R. N. Thomas, R. A. Wickstrum, D. K. Schroder and H. C. Nathanson, "Fabrication and some applications of large area silicon field emission arrays" Solid State Electron 17, 155 (1974).
    147. H. F. Gray, G. J. Campisi and R. F. Greene, in Technical Digest of IEDM (Washington, D. C., 1992), pp. 1.
    148. T. Sugino, T. Hori, C. Kimura and T. Yamamoto, "Field emission from GaN surfaces roughness by hydrogen plasma treatment" Appl. Phys. Lett. 78 (21), 3229 (2001).
    149. C.C. Chen, C.C. Yeh, C.H. Lian, C.C. Lee, C.H. Chen, M.Y. Yu, H.L. Liu, L.C. Chen, Y.S. Lin, K.J. Ma and K. H. Chen, "Preparation and characterization of carbon nanotubes encapsulated GaN nanowires" J. Phys. Chem. Solids 62, 1577 (2001).
    150. C.C. Chen, C.C.Yeh, C.H. Chen, M.Y. Yu, H.L. Liu, J.J. Wu, K.H. Chen, L.C. Chen, J.Y. Peng and Y. F. Chen, "Catalytic growth and characterization of gallium nitride nanowires" J. Am. Chem. Soc. 123, 2791 (2001).
    151. Y. Terada, H. Yoshida, T. Urushiro, H. Miyake and K. Hiramatsu, "Field emission from GaN self organized nanotips" Jpn. J. Appl. Phys 41, L1194 (2002).
    152. H.M. Kim, T.W. Kang, K.S. Chung, J.P. Hong and W. B. Choi, " Field emission displays of wide-bandgap gallium nitride nanorod arrays grown by hydride vapor phase epitaxy " Chem. Phys. Lett. 377 (5-6), 491 (2003).
    153. T.Y. Kim, S.H. Lee, Y.H. Mo, H.W. Shim, K.S. Nahm, E.K. Suh, J.W. Yang, K.Y. Lim and G. S. Park, "Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor " J. Cryst. Growth 257 (97-103), 97 (2003).
    154. T.Y. Kim, S.H. Lee, Y.H. Mo and K. S. Nahm, "Growth and field emission of GaN nanowires" Mater. Sci. Forum. 457-460, 1585 (2004).
    155. L. Luo, K. Yu, Z. Zhu, Y. Zhang, H. Ma, C. Xue, Y. Yang and S. Chen, "Field emission from GaN nanobelts with herringbone morphology " Mater. Lett. 58, 2893 (2004).
    156. B. Liu, Y. Bando, C. Tang, F. Xu and D. Golberg, "Quasi-aligned single-crystalline GaN nanowire arrays " Appl. Phys. Lett. 87 (7), 073106 (2005).
    157. B. Liu, Y. Bando, C. Tang, F. Xu and D. Golberg, "Excellent field-emission properties of P-doped GaN nanowires " J. Phys. Chem. B 109 (46), 21521 (2005).
    158. B. Liu, Y. Bando, C. Tang, F. Xu, J. Hu and D. Golberg, "Needlelike bicrystalline GaN nanowires with excellent field emission properties " J. Phys. Chem. B 109 (36), 17082 (2005).
    159. T. Yamashita, S. Hasegawa, S. Nishida, M. Ishimaru, Y. Hirotsu and H. Asahi, "Electron field emission from GaN nanorod films grown on Si substrates with native silicon oxides " Appl. Phys. Lett. 86, 082109 (2005).
    160. S. Hasegawa, S. Nishida, T. Yamashita and H. Asahi, "Field electron emission from polycrystalline GaN nanorods " J. Ceram. Procss. Res. 6 (3), 245 (2005).
    161. T. Lopez-Rios, "Diamond films studied by surface-enhanced Raman scattering" Diam. Relat. Mater. 5 (6-8), 608 (1996).
    162. M. Fleischmann, P. J. Hendra and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode" Chem. Phys. Lett. 26 (2), 163 (1974).
    163. K. Kim, K. L. Kim and S. J. Lee, "Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy " Chem. Phys. Lett. 403 (1-3), 77 (2005).
    164. B. R. Huang, K. H. Chen and W. Z. Ke, "Surface-enhanced Raman analysis of diamond films using different metals " Mater. Lett. 42 (3), 162 (2000).
    165. J. M. McLellan, A. Siekkinen, J. Chen and Y. Xia, "Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes " Chem. Phys. Lett. 427 (1-3), 122 (2006).
    166. Y. Zhao, Y. Jiang and Y. Fang, "Spectroscopy property of Ag nanoparticles " Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 65, 1003 (2006).
    167. J. P. Schmidt, S. E. Cross and S. K. Buratto, "Surface-enhanced Raman scattering from ordered Ag nanocluster arrays" J. Chem. Phys. 121 (21), 10657 (2004).
    168. H. Xu, J. Aizpurua, M. Kall and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering" Phys. Rev. E 62, 4318 (2000).
    169. M. Moskovits, "Surface enhanced spectroscopy" Rev. Mod. Phys. 57 (3), 783 (1985).
    170. W. Song, Y. Cheng, H. Jia, W. Xu and B. Zhao, "Surface enhanced Raman scattering based on silver dendrites substrate " J. Colloid Interface Sci. 298, 765 (2006).
    171. M. A. Khan, T. P. hogan and B. Shanker, "Surface-enhanced Raman scattering from gold-coated germanium oxide nanowires " J. Raman Spectrosc. 39 (7), 893 (2008).
    172. J. Chen, T. Martensson, K. A. Dick, K. Deppert, H. Q. Xu, L. Samuleson and H. Xu, "Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles " Nanotechnology 19, 275712 (2008).
    173. S. Deng, H. M. Fan, X. Zhang, K. P. Loh, C. L. Cheng, C. H. Sow and Y. L. Foo, "An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array " Nanotechnology 20 (17), 175705 (2009).
    174. M. Shao, L. Lu, H. Wang, S. Luo and D. D. D. Ma, "Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering " Microchim Acta 164 (1-2), 157 (2009).
    175. W. Leng, A. A. Yasseri, S. Shama, Z. Li, H. Y. Woo, D. Vak, G. C. Bazan and A. M. Kelley, "Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering " Anal. Chem. 78, 6279 (2006).
    176. T. Qiu, X. L. Wu, J. C. Shen, P. C. T. Ha and P. K. Chu, "Surface-enhanced Raman characteristics of Ag cap aggregates on silicon nanowire arrays " Nanotechnology 17, 5769 (2006).
    177. B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang and X. Cheng, "Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy " Adv. Funct. Mater. 18, 2348 (2008).
    178. M. W. Shao, M. L. Zhang, N. B. Wong, D. D. D. W. Ma, H., W. Chen and S. T. Lee, "Ag modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy " Appl. Phys. Lett. 93, 233118 (2008).
    179. C. H. Liu, W. C. Yiu, F. C. K. Au, J. X. Ding, C. S. Lee and S. T. Lee, "Electronical properties of znic oxide nanowires and intramolecular p-n junctions" Appl. Phys. Lett. 83 (15), 3168 (2003).
    180. http://npl.postech.ac.kr/?mid=topic_nanopattern#aao.
    181. G. Fursey, Filed Emission in Vacuum Microelectronics. Kluwer Academic / Plenum Publishers, New York, 2005.
    182. 施丞達, "化學氣相沈積法製備氮化鎵奈米線及其特性研究" 國立成功大學 材料科學及工程學系 碩士論文 (民國95年).
    183. 羅佩嵐, "奈米金顆粒於電漿活化矽基板對氮化鎵奈米線成長之研究" 國立成功大學 材料科學及工程學系 碩士論文 (民國97年).
    184. K. Kusakabe, A. Kikuchi and L. Kishino, "Overgriwth of GaN layer on GaN nano-columns by RF-molecular beam epitaxy" J Cryst. Growth 237-239, 988 (2002).
    185. G. Gao, Nanostructures & Nanomaterials : Synthesis, Properties & Applications. Imperial college Press, Londen, 2004.
    186. I. H. Campbell and P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors" Solid State Commun. 58 (10), 739 (1986).
    187. H. Richter, Z. P. Wang and L. Ley, " The one phonon Raman spectrum in microsrystalline silicon" Solid State Commun. 39 (5), 625 (1981).
    188. G. S. Cheng, L. D. Zhang, G. Y. Zhu, T. Fei, L. Li, C. M. Mo and Y. Q. Mao, "Large-scale synthesis of single crystalline gallium nitride nanowires " Appl. Phys. Lett. 75 (16), 2455 (1999).
    189. Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen and C. G. Fonstad, "High optical quality GaN nanopillar arrays" Appl. Phys. Lett. 86, 071917 (2005).
    190. L. Cerutti, J. Ristic, S. Frenamdez-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic and J. M. Calleja, "Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy " Appl. Phys. Lett. 88 (21), 213114 (2006).
    191. T. Y. Kim, S. H. Lee, T. H. Mo, K. S. Shim, E. K. Suh, J. W. Yang, K. Y. Lim and G. S. Park, "Growth of GaN nanowires on Si substrates using Ni catalysts in vertical chemical vapor deposition reactor" J Cryst. Growth 257, 97 (2003).
    192. J. W. Orton and C. T. Foxon, "Group III nitride semiconductors for short wavelength light-emitting devices" Rep. Prog. Phys. 61, 1 (1998).
    193. J. K. Jian, X. L. Chen, Q. Y. Tu, Y. P. Xu, L. Dai and M. Zhao, "Preparation and optical properties of prism-shaped GaN nanorods" J. Phys. Chem. B 108, 12024 (2004).
    194. X. Zhang, Z. Liu, C. Wong and S. Hark, "Synthesis and optical properties of single crystalline GaN nanorods with a rectangular cross-section" Solid State Commun. 139, 387 (2006).
    195. Y. T. Nien and I. G. Chen, "Raman scattering and electroluminescence of ZnS : Cu,Cl phosphor powder " Appl. Phys. Lett. 89 (26), 261906 (2006).
    196. C. L. Chen, Y. F. Chen, R. S. Chen and Y. S. Huang, "Raman scattering and field-emission properties of RuO2 nanorods " Appl. Phys. Lett. 86 (10), 103104 (2005).
    197. B. Ha, S. H. Seo, J. H. Cho, C. S. Yoon, J. Yoo, G. C. Yi, C. Y. Park and C. J. Lee, "Optical and field emission properties of thin single-crystalline GaN nanowires " J. Phys. Chem. B 109 (22), 11095 (2005).
    198. X. Xiang, C. Cao, Y. Xu and H. Zhu, "Large-scale synthesis and optical properties of hexagonal GaN micropyramid/nanowire homostructures " Nanotechnology 17 (1), 30 (2006).
    199. S. Y. Bae, H. W. Seo and J. Park, "Triangular gallium nitride nanorods " Appl. Phys. Lett. 82 (25), 4564 (2003).
    200. T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide and K. Manabe, "Thermal stress in GaN epitaxial layers grown on sapphire substrates" J. Appl. Phys. 77 (9), 4389 (1995).
    201. S. C. Lyu, O. H. Cha, E. K. Suh, H. Ruh, H. J. Lee and C. J. Lee, "Catalytic synthesis and photoluminescence of gallium nitride nanowires " Chem. Phys. Lett. 367 (1-2), 136 (2003).
    202. A. Polimeni, G. Ciatto, L. Ortega, F. Jiang, F. Bosherini, F. Filippone, A. A. Bonapasta and M. Stavola, "Lattice relaxation by atomic hydrogen irradiation of III-N-V semiconductor alloys " Phys. Rev. B 68, 085204 (2003).
    203. Z. C. Feng, W. Wang, S. J. Chua, P. X. Zhang, K. P. J. Williams and G. D. Pitt, "Raman scattering properties of GaN thin films grown on sapphire under visible and ultraviolet excitation " J. Raman Spectrosc. 32 (10), 840 (2001).
    204. S. Nakamura, The Blue Laser Diode. Springer, Berlin, 1997.
    205. J. I. Pankove and T. D. Moustakas, Gallium Nirtride. Academic Press, San Diego, 1998.
    206. Z. Yang, L. K. Li, J. Alperin and W. I. Wang, "Nitrogen vacancy as the donor: Experimental evidence in the ammonia-assisted molecular beam epitaxy of GaN " J. Electrochem. Soc. 144 (10), 3474 (1997).
    207. O. Manasreh, Semiconductor heterojunctions and nanostructures. McGraw Hill, Boston, 2005.
    208. T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide and K.Manabe, "Raman scattering from LO phonon-plasmon coupled mode in gallium nitride" J. Appl. Phys. 75, 1098 (1994).
    209. H. Harima, H. Sakashita, T. Inoue and S. I. Nakashima, "Electronic properties in doped GaN studied by Raman scattering " J. Cryst. Growth 189, 672 (1998).
    210. F. Demangeot, J. Frando, M. A. Renucci, O. Briot, B. Gil and R. L. Aulombard, "Raman determination of phonon deformation potentials in alpha-GaN " Solid State Commun. 100 (4), 207 (1996).
    211. Z. J. Li, X. L. Chen, H. J. Li, Q. Y. Tu, Z. Yang, Y. P. Xu and B. Q. Hu, "Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires " Appl. Phys. A-Mater. Sci. Process. 72, 629 (2001).
    212. C. Xu, S. Chung, M. Kim, D. E. Kim, B. Chon, S. Kong and T. Joo, "Doping of Si into GaN nanowires and optical properties of resulting composites " J. Nanosci. Nanotechnol. 5, 530 (2005).
    213. J. S. Hwang, D. Ahn, S. H. Hong, H. K. Kim, S. W. Hwang, B. H. Jeon and J. H. Choi, "Effect of Ti thickness on contact resistance between GaN nanowires and Ti/Au electrodes " Appl. Phys. Lett. 85 (9), 1636 (2004).
    214. C. W. Wang, "Neutron irradiation effects on visible-blind Au/GaN Schottky barrier detectors grown on Si(111) " Appl. Phys. Lett. 80, 1568 (2002).
    215. E. H. Rhoderick and R. H. Williams, Metal-semiconductor Contacts. Clarendon Press, Oxford, 1988.
    216. D. Y. Jeon, K. H. Kim, S. J. Park, J. H. Huh, H. Y. Kim, C. Y. Yim and G. T. Kim, "Enhanced voltage-current characteristics of GaN nanowires treated by a selective reactive ion etching " Appl. Phys. Lett. 89, 023108 (2006).
    217. J. R. Kim, H. Oh, H. M. So, J. J. Kim, J. Kim, C. J. Lee and S. C. Lyu, "Schottky diodes based on a single GaN nanowire " Nanotechnology 13, 701 (2002).
    218. Z. C. Huang, D. B. Mott and P. K. Shu, presented at the Proceeding of the 54th Annual Digest Device Research Conference, 1996 (unpublished).
    219. Y. J. Lin, Q. Ker, C. Y. Ho, H. C. Chang and F. T. Chien, "Nitrogen-vacancy-related defects and Fermi level pinning in n-GaN Schottky diodes " J. Appl. Phys. 94, 1819 (2003).
    220. A. T. Ping, A. C. Schmitz and I. Adesida, "Characterization of reactive ion etching-induced damage to n-GaN surfaces using Schottky diodes " J. Electron. Mater. 26, 266 (1997).
    221. B. S. Simpkins, P. E. Pehrsson, M. L. Taheri and R. M. Stroud, "Diameter control of gallium nitride nanowires" J. Appl. Phys. 101, 094305 (2007).
    222. R. Calarco, M. Marso, T. Richter, A.I. IAykanat, R. Meijers, A.v.d. Hart, T. Stoica and H. Luth, "Size-dependent photoconductivity in MBE-grown GaN-nanowires " Nano Lett. 5 (5), 981 (2005).
    223. Y. Yamanoi, N. Shirahata, T. Yonezawa, N. Terasaki, N. Yamamoto, Y. Matsui, K. Nishio, H. Masuda, Y. Ikuhara and H. Nishihara, "Detailed structural examinations of covalently immobilized gold nanoparticles onto hydrogen-terminated silicon surfaces" Chem. Eur. J. 12, 314 (2006).
    224. J. McMurry, Fundamentals of Organic Chemistry. Thomson Brooks/Cole, USA, 2007.
    225. C. Cai, X. H. Chen and H. Gong, "Interaction of anticancer drug methotrexate with nucleic acids analyzed by multi-spectroscopic method " Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 72, 46 (2009).
    226. K. C. Garbar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie and M. J. Natan, J. Am. Chem. Soc. 118, 1148 (1996).
    227. H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho and K. S. Chung, "Growth and characterization of single crystal GaN nanorods by hydride vapor phase epitaxy" Appl. Phys. Lett. 81 (12), 2193 (2002).
    228. B. Gil, Low-Dimensional Nitride Semiconductors. Oxford University, New York, 2002.
    229. H. Y. Chen, H. W. Lin, C. H. Shen and S. Gwo, "Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy" Appl. Phys. Lett. 89, 243105 (2006).
    230. B. Ha, S. H. Seo, J. H. Cho, C. S. Yoon, J. Yoo, G. G. Yui, C. Y. Park and C. J. Lee, "Optical and field emission properties of thin single-crystalline GaN nanowires" J. Phys. Chem. B 109, 11095 (2005).
    231. H. Jin, M. Kuball and J. M. Redwing, "Vibrational and optical properties of GaN nanowires synthesized by Ni-assisted catalytic growth" Nanotechnology 18, 445704 (2007).
    232. M. A. Reshchikov and H. Morkoc, "Luminescence properties of defects in GaN " J. Appl. Phys. 97, 061301 (2005).
    233. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics " Nature 415, 617 (2002).
    234. S. Ju, J. Li, J. Liu, P. C. Chen, Y. G. Ha, F. Ishikawa, H. Chang, c. Zhou, A. Facchetti, D. B. Janes and T. J. Marks, "Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry " Nano Lett. 8, 997 (2008).
    235. H. M. Kim, Y. H. Choo, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays " Nano Lett. 4, 1059 (2004).
    236. Y. Huang, X. Duan, Y. Cui and C. M. Lieber, " Gallium nitride nanowire nanodevices " Nano Lett. 2, 101 (2002).
    237. G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo and Y. Q. Mao, "Large-scale synthesis of single crystalline gallium nitride nanowires " Appl. Phys. Lett. 75, 2455 (1999).
    238. X. Duan and C. M. Lieber, "Laser-assisted catalytic growth of single crystal GaN nanowires " J. Am. Chem. Soc. 122, 188 (2000).
    239. C. C. Chen and C. C. Yeh, "Large-scale catalytic synthesis of crystalline gallium nitride nanowires " Adv. Mater. 12 (10), 738 (2000).
    240. R. Calarco, R. J. Meijer, R. K. debnath, T. Stoica, E. Sutter and H. Luth, "Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy " Nano Lett. 7, 2248 (2007).
    241. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger and P. Yang, "Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections " Nano Lett. 3, 1063 (2003).
    242. K. Lorenz, U. Wahl, E. Alves, S. Dalmasso, R. W. Martin, K. P. O'Donnel, S. Ruffenach and O. Briot, "High-temperature annealing and optical activation of Eu-implanted GaN " Appl. Phys. Lett. 85 (14), 2712 (2004).
    243. K. Lorenz, E. Alves, T. Monteiro, M. J. Soares, M. Peres and P. J. M. Smulders, "Optical doping of AlN by rare earth implantation " Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 242, 307 (2006).
    244. A. Braud, J. L. Doualan, R. Moncorge, B. Pipellers and A. Vantomme, "Er-defect complexes and isolated Er center spectroscopy in Er-implanted GaN " Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 105 (1-3), 101 (2003).
    245. K. Lorenz, U. Wahl, E. Alves, E. Nogales, S. Dalmasso, R. W. Martin, K. P. O'Donnel, M. Wojdak, A. Braud, T. Montrior, T. Wojtowicz, P. Ruterana, S. Ruffenach and O. Briot, "High temperature annealing of rare earth implanted GaN films: Structural and optical properties " Opt. Mater. 28, 750 (2006).
    246. S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, Y. L. Wang, L. C. Chen, C. W. Hsu, H. M. Lin and C. C. Chen, "Enhanced dynamic annealing in Ga+ ion-implanted GaN nanowires " Appl. Phys. Lett. 82, 451 (2003).
    247. P. J. Huang, C. W. Chen, J. Y. Chen, G. C. Chi, C. J. Pan, C. C. Kuo, L. C. Chen, C. W. Hsu, K. H. Chen, S. C. Hung, C. Y. Chang, S. J. Pearton and F. Ren, "Optical and structural properties of Mg-ion implanted GaN nanowires " Vacuum 83, 797 (2009).
    248. Z. Y. Wu, R. F. Chen, J. J. Kai, W. B. Jian and J. J. Lin, "Fabrication, characterization and studies of annealing effects on ferromagnetism in Zn1-xCoxO nanowires " Nanotechnology 17, 5511 (2006).
    249. S. Dhara, A. Datta, C. T. Wu, K. H. Chen, Y. L. Wang, S. Muto, T. Tanabe, C. H. Shen, C. W. Hsu, L. C. Chen and T. Maruyama, "Mechanism of nanoblister formation in Ga+ self-ion implanted GaN nanowires " Appl. Phys. Lett. 86, 203119 (2005).
    250. Z. H. Lu, T. Tyliszczak, P. Broderson, A. P. Hitchcock, J. B. Webb, H. Tang and J. Bardwell, "Local microstructures of Si in GaN studied by x-ray absorption spectroscopy " Appl. Phys. Lett. 75 (4), 534 (1999).
    251. J. B. Metson, H. J. Trodahl, B. J. Ruck, U. D. Lanke and A. Bittar, "X-ray absorption spectroscopy in the analysis of GaN thin films " Surf. Interface Anal. 35, 719 (2003).
    252. J. W. Chiou, J. C. Jan, H. M. Tsai, W. F. Pong, M. H. Tasi, I. H. Hong, R. Klauser, J. F. Lee, C. W. Hsu, H. M. Lin, C. C. Chen, C. H. Shen, L. C. Chen and K. H. Chen, "Electronic structure of GaN nanowire studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy " Appl. Phys. Lett. 82 (22), 3949 (2003).
    253. S. O. Kucheyev, J. E. Bradby, P. C. Li, S. Ruffell, T. v. Burren and T. E. Felter, "Effects of carbon on ion-implantation-induced disorder in GaN " Appl. Phys. Lett. 91, 261905 (2007).
    254. M. Katsikini, F. Pinakidou, E. C. Paloura and W. Wesch, "Identification of implantation-induced defects in GaN: A near-edge x-ray absorption fine structure study " Appl. Phys. Lett. 82 (10), 1556 (2003).
    255. B. Ha, S.H. Seo, J.H. Cho, C.S. Yoon, J. Yoo, G.C. Yi, C.Y. Park and C. J. Lee, "Optical and field emission properties of thin single-crystalline GaN nanowires " J. Phys. Chem. B 109, 11095 (2005).
    256. J. E. Northrup and J. Neugebauer, "Indium-induced changes in GaN(0001) surface morphology " Phys. Rev. B 60, R8473 (1999).
    257. H. P. Liu, J. D. Tsay, W. Y. Liu, Y. D. Guo, J. T. Hsu and I. G. Chen, "The growth mechanism of GaN grown by hydride vapor phase epitaxy in N2 and H2 carrier gas " J Cryst. Growth 260, 79 (2004).
    258. T.W. Kang and H. M. Kim, "Growth and applications of HVPE-GaN nanorods " Met. Mater.-Int. 10, 367 (2004).
    259. J. R. Kim, B. K. Kim, I. J. Lee, J. J. Kim, J. Kim, S. C. Lyu and C. J. Lee, "Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires " Phys. Rev. B 69, 233303 (2004).
    260. B. J. Li, S. C. Kung, T. F. Kuo and H. J. Lai, in International Conference on New Diamond Science and Technology (Industrial Technology Research Institude, Material and Chemical Research Laboratories, Hsin Chu 310, Taiwan, 2002), pp. ID153.
    261. V.N. Shrednik, V.G. Pavlov, A.A. Rabinovich and B.M. Shaikhin, Izv. Akad. Nauk SSSR: Ser. Fiz. (USSR) 38, 2 (1974).
    262. E. O. Johnson, "Physical limitations on frequency and power parameters of transistors" RCA Rev. 26, 163 (1965).
    263. W. Zhu, Vacuum Microelectronic. John Wiley & Sons, New York, 2001.
    264. M. He, I. Minus, P. Zhou, S. N. Mohammad, J. B. Halpern, R. Jacobs, W. L. Sarney, L. S. Riba and R. D. Vispute, "Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3 " Appl. Phys. Lett. 77, 3731 (2000).
    265. J. Khanderi, A. Wohlfart, H. Parala, A. Devi, J. Hambrock, A. Birkner and R. A. Fischer, "MOCVD of gallium nitride nanostructures using (N-3) Ga-2{( CH2)(3)NR2}, R = Me, Et, as a single molecule precursor: morphology control and materials characterization " J. Mater. Chem. 13, 1438 (2003).
    266. K. Kneipp, N. Moskovits and H. Kneipp, Surface-Enhanced Raman Scattering. Springer-Verlag, Berlin Heidelberg, 2006.
    267. K. H. Lee, C. D. Shin, I. G. Chen and B. J. Li, "The effect of nanoscale protrusion of field emission properties for GaN nanowires" J. Electrochem. Soc. 154 (10), K87 (2007).
    268. C. Y. Chang, S. J. Pearton, P. J. Huang, G. C. Chi, H. T. Wang, J. J. Chen, F. Ren, K. H. Chen and L. C. Chen, "Control of nucleation site density of GaN nanowires " Appl. Surface Sci. 253, 3196 (2007).
    269. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. Choi, "Controlled growth of ZnO nanowires and their optical properties " Adv. Func. Mater. 12 (5), 323 (2002).
    270. E. C. Greyson, Y. Babayan and T. W. Odom, "Directed growth of ordered arrays of small-diameter ZnO nanowires " Adv. Mater. 16 (15), 1348 (2004).
    271. Y. S. Lai, J. L. Wang, S. L. Liou and C. H. Tu, "Size and density control of silicon oxide nanowires by rapid thermal annealing and their growth mechanism " Appl. Phys. A 94, 357 (2009).
    272. T. E. Bogart, S. Dey, K. K. Lew, S. E. Mohney and J. M. Redwing, "Diameter-controlled synthesis of silicon nanowires using nanoporous alumina membranes " Adv. Mater. 17 (1), 114 (2005).
    273. M. S. Gudiksen, J. Wang and C. M. Lieber, "Synthetic control of the diameter and length of single crystal semiconductor nanowires " J. Phys. Chem. B 105, 4062 (2001).
    274. Z. Huang, H. Fang and J. Zhu, "Fabrication of silicon nanowire arrays with controlled diameter, length, and density " Adv. Mater. 19, 744 (2007).
    275. 王文靖, "銀顆粒附著於氮化鎵奈米線在表面增顯拉曼之研究" 國立成功大學 材料科學及工程學系 碩士論文 (民國99年).

    無法下載圖示 校內:2015-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE