| 研究生: |
陸冠廷 Lu, Guan-Ting |
|---|---|
| 論文名稱: |
質子交換膜燃料電池電化學性能之數值計算與分析 Numerical calculation and analysis of the electrochemical performance of proton exchange membrane fuel cells |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 流道設計 、電化學模擬 、流道切割 、電化學參數 |
| 外文關鍵詞: | Flow channel, Electrochemical simulation, Flow channel subdivision, Electrochemical parameters |
| 相關次數: | 點閱:125 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今環保意識抬頭,加上原有的能源並非可供人類無限使用,發展替代能源是當務之急,有感於此目前本實驗室正與工研院合作發展燃料電池技術。在計畫前期實驗室徐子軒學長的研究主要注重在於流道板的設計,目的是在降低流阻,提高流量與發電效率。而本階段則將焦點放在發展電化學模擬上,目標是在設計完流道後可以透過模擬來預測實驗結果,以節省實驗所需的時間和開模成本。
先前在設計好流道後,我們進入實驗階段並選出最適合的流道。依我們目前發電測試實驗結果來看,對稱支流型流道的性能表現比環繞式流道還要來得好,所以在電化學模擬中我們會以對稱支流型流道為主,進行結果比對。由於每設計一款流道就進行一次發電實驗是非常耗時且耗成本的工程,所以本論文想利用Ansys Fluent軟體找到最適合的參數設定進行電化學模擬。但首先會面臨到目前所擁有的電腦資源並無法負荷整塊流道板網格數目的問題,因此我們透過流道切割的方式進行模擬計算,最後再將模擬結果和實驗所得到的數據進行比對,驗證此方法可行性。
目前我們已經透過試誤法找到一組參數可使得電化學模擬和發電實驗所得到的電流密度値誤差在±50mA/〖cm〗^2內,我們也透過參數的敏感度分析整理出圖表,未來在實驗操作條件改變時,可藉由整理好的圖表快速找到適合的參數組合,節省大量使用試誤法調整參數的時間。
With the rise of environmental awareness and the depleting use of existing energy, the development of alternative energy is of top priority. Therefore, we are working with the Industrial Technology Research Institute (ITRI) to help develop fuel cell technology. In the early stage of this research, we focused on the design of the flow channels. The purpose was to reduce the flow resistance and increase the flow rate. Electrochemical simulation is being developed at this stage. The goal is to predict the experimental results through simulation after designing the flow channel, so as to save the experiment time and cost. After designing the flow channel, we entered the experimental stage and selected the most suitable flow channel. According to the results of our current power generation test, the performance of the symmetrical bifurcation flow channel is better than the turn-around flow channel. Therefore, in the electrochemical simulation, we use the symmetrical tributary flow channel as the main flow channel to compare the numerical and experimental results. Because it is time consuming to perform a power generation experiment every time a flow path was designed, in this work we use numerical software to find the most suitable electrochemical parameters for electrochemical simulations. First of all, we had the problem that the current computer resources can not handle the entire number of flow channel grids. Therefore, we subdivided the flow channel into several portions so as to perform simulation calculations. Finally, we compared the simulation results with the experimental data to verify the feasibility of this method. We had found a set of parameters through the trial and error method that could make the current density error in the electrochemical simulation and power generation experiments within ±50 mA/〖cm〗^2. Systematic procedures for future calibration of numerical parameters also are proposed here.
[1] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005年。
[2] 徐子軒,「質子交換膜燃料電池流道之壓降分析與幾何懮化設計」,國立成功大學,2016年。
[3] H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, A. Mazza“A review of water flooding issues in the proton exchange membrane fuel cell”Journal of Power Sources,vol. 178, pp. 103-117, 2008.
[4] T.V. Nguyen, R.E. White“A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells”Journal of Eletrochemical Society, vol. 140, pp. 2178-2186, 1993.
[5] H. Chen, X. Guo, Y. Zeng, G. Ma“ Study on Dynamic Models of Water Management in Proton Exchange Membrane Fuel Cell” School of Chemistry & Chemical Engineering, Jinggangshan University, 2017
[6] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld“Polymer electrolyte fuel cell model” Journal of Eletrochemical Society,vol. 138, pp. 2334-2342,1991.
[7] D.R. Morris, X. Sun“Water-sorption and transport properties of Nafion 117 H” Journal of Applied Polymer Science,vol. 50, pp 1445-1452, 1993.
[8] S. Rakhshanpouri, S. Rowshanzamir “Water transport through a PEM fuel cell in a seven-layer model”Energy, vol. 50, pp. 220, 2013.
[9] S. Ge, B. Yi, H. Xu“Model of water tansport for proton-exchange membrane fuel cell(PEMFC)”Journal of industrial and Engineering Chemistry,vol. 50, pp. 39, 1999.
[10] Y. Wang“Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells”Journal of Power Sources,vol. 185, pp. 261-271, 2008.
[11] Y.X. Huang, C.H. Cheng, X.D. Wang, J.Y. Jang“Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells”Energy,vol. 35, pp. 4786-4794, 2010.
[12] B. Dokkar, N.E. Settou, O. Imine, N. Saifi, B. Negrou, Z. Nemouchi“Simulation of species transport and water management in PEM fuel cells”International Journal of Hydrogen Energy,vol. 36, pp. 4220-4227, 2011.
[13] V. Devaraj“Modeling, design, development, and control of a pilotacale continuous coating line for porton exchange membrane fuel cell electrode assembly”. Awstin: University of Texas at sustin, 2012
[14] C. Wang, Z. Mao, J. Xu, X. Xie“Self-humidifying proton exchange membrane fuel cell at anode blockage operating-Performance and water distribution”Chinese Journal of Power Source,vol. 27, pp. 413, 2003.
[15] N.K. Kim, J.H. Kang, S.G. Lee, J.H. Nam, C.J. Kim“Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells”Journal of Power Source,vol. 278, pp. 703-717, 2015.
[16] A. Iranzo, M. Munoz, F. Rosa, J. Pino“Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation”International Journal of Hydrogen Energy,vol. 35, pp. 11533-11550, 2010.
[17] S. Li, J. Cao, W. Wangard, U. Becker“Modeling PEMFC with FLUENT: Numerical Performance and Validations with experimental data”3rd International Conference on Fuel Cell Science, Engineering and Technology, 2005.