簡易檢索 / 詳目顯示

研究生: 劉家瑋
Liu, Chia-Wei
論文名稱: 白點症病毒在複製期間透過病毒基因對嘧啶生合成之調控
WSSV-mediated regulation of pyrimidine biosynthesis for its replication in shrimp
指導教授: 王涵青
Wang, Han-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 138
中文關鍵詞: 白點症病毒核苷酸代謝核醣核苷酸還原酶脫氧尿酸三磷酸酶胸苷激酶胸苷酸激酶親和性純化質譜分析酵母菌雙雜和系統
外文關鍵詞: WSSV, nucleic acid metabolism, RR1, RR2, dUTPase, TS, TK, TMK, AP-MS, Y2H
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白點症(white spot disease, WSD)是由白點症病毒(white spot syndrome virus, WSSV)所引起的嚴重傳染性水產動物疾病,可於感染後一週內達到100%的致死率。WSSV在感染宿主後會誘導瓦式效應產生能量並促進麩醯胺酸分解、脂肪生成和核酸合成的進行,以此為病毒複製提供前驅物及能量。其中核苷酸代謝對於病毒和癌細胞傳播遺傳訊息和促進疾病進展都至關重要。目前在白點症病毒之基因組中共有532 個 ORF被辨認出,儘管大多數的病毒蛋白與已知蛋白質沒有同源性。然而仍有WSSV基因可轉譯出與核酸合成相關酵素的同源性蛋白。因此本研究著重於下列WSSV基因:WSSV228、WSSV243、WSSV168、WSSV124、WSSV454,這些基因分別可轉譯出: 核糖核苷酸還原酶1 (Ribonucleotide reductase large subunit, wRR1)、核糖核苷酸還原酶2 (Ribonucleotide reductase small subunit, wRR2)、脫氧尿酸三磷酸酶(deoxyuridine triphosphatase, wdUTPase)、胸苷酸合成酶 (Thymidylate synthase, wTS)、胸苷激酶和胸苷酸激酶(Thymidine kinase and thymidylate kinase, wTK-TMK),其中wTK-TMK為嵌合蛋白,對宿主蛋白TK及TMK同時表現出同源性。 這些WSSV基因皆參與在嘧啶新生中,透過消耗尿苷二磷酸 (UDP) 產生脫氧胸苷二磷酸 (dTDP)。 當在蝦體內注射對應的 dsRNA 並以 WSSV 感染時,會使WSSV早期及晚期基因表現下降,並使WSSV基因組複製數顯著下降。 因此我們推測這些病毒蛋白在病毒基因組複製階段 (WSSV注射後12小時)對於WSSV的致病機制很重要。為了了解這些WSSV基因與其他WSSV基因或宿主基因之間的關聯性,我們透過 Sf9 昆蟲細胞表現 wRR1 和 wTK-TMK重組蛋白,接著利用親和性純化質譜分析 (Affinity Purification-Mass Spectrometry, AP-MS),分別篩選出可能與wRR1有交互作用的370個宿主蛋白及10個WSSV病毒蛋白;以及可能與wTK-TMK有交互作用的556個宿主蛋白及13個WSSV病毒蛋白,接著透過使用ContigViews以及實驗室先前所建立之轉錄梯學資料庫構建蛋白質-基因關聯網路,並從這些蛋白中選出位於負相關中心之XP_027212313 (uncharacterized protein)以及參與glycolysis中但尚未在WSSV研究中被深入探討的果糖-1,6-二磷酸醛縮酶 (Fructose-1,6-bisphosphate aldolase, LvFBA)和葡萄糖-6-磷酸異構酶 (Glucose-6-phosphate isomerase, LvGPI) 作為潛在宿主蛋白,這些蛋白在蝦類 WSSV 致病機制中可能至關重要, 當在蝦體內注射 LvGPI之dsRNA並以WSSV感染後,會使WSSV早期及晚期代表性基因表現下降,並使WSSV基因組複製數顯著下降。因此我們推測LvGPI在WSSV複製其間扮演重要的角色。同時,為了瞭解wTK-TMK與其他WSSV病毒蛋白是否有直接地相互作用,我們透過酵母菌雙雜合系統 (Yeast-two-hybrid)篩選與wTK-TMK有潛在交互作用能力的WSSV蛋白。總之研究結果表示病毒蛋白wRR1, wRR2, wTS, wTK-TMK以及宿主蛋白LvGPI對在WSSV 病毒複製過程中扮演重要的角色,並透過親和性純化質譜分析及酵母菌雙雜合系統篩選出與wRR1或wTK-TMK有潛在結合能力的蛋白,以供進一步的探討。

    White Spot Disease (WSD), a severe disease in crustaceans, is caused by White Spot Syndrome Virus (WSSV), which causes 100% mortality within 1 week after infection. To promote its replication, WSSV will trigger the Warburg effect and induce glutaminolysis, lipogenesis, and nucleic acid synthesis to provide energy and bioproduct for viral replication. In particular, nucleotide metabolism is important for both virus and cancer cells to disseminate genetic information and promote disease progression. In total, 532 ORFs have been identified in the WSSV genome, although most of them have no similarity to known proteins. However, there are some WSSV proteins that show homology to enzymes involved nucleic acid metabolism. Our objective was to focus these WSSV proteins: ribonucleotide reductase 1 (wRR1), ribonucleotide reductase 2 (wRR2), dUTP diphosphatase (wdUTPase), thymidylate synthase (wTS), thymidine kinase and thymidylate kinase (wTK-TMK). These proteins are involved in de novo pyrimidine synthesis to produce deoxythymidine diphosphate (dTDP) from uridine diphosphate (UDP). When shrimp were injected with corresponding dsRNA and challenged with WSSV, there were significant decreases in both WSSV gene expression and WSSV genome copies. Therefore, we speculated that these viral proteins are important for WSSV pathogenesis at the viral replication stage (12 h post WSSV injection), which can further influence WSSV gene expression and viral genome copies. To understand the association between these viral proteins with other WSSV viral proteins and host proteins, wRR1 and wTK-TMK were transfected into sf9 insect cells. By using affinity-purification mass spectrometry (AP-MS), we identified some cellular protein that might interact with wRR1 or wTK-TMK. In total, there are 370 host proteins and 10 WSSV proteins in wRR1 bound proteins, and there are 556 host proteins and 12 WSSV proteins in wTK-TMK bound proteins. In all of these proteins, XP_027212313, LvGPI and LvFBA were identified as potential host genes that may be critical during WSSV pathogenesis in shrimp. Also, yeast-two-hybrid system was used to screen WSSV proteins that might interact with wTK-TMK. The interaction need to be validated by co-immunoprecipitation. In conclusion, this study revealed the importance of wRR1, wRR2, wTS, wTK-TMK and LvGPI during WSSV replication in shrimp, and identified potential proteins that might interact with wRR1 or wTK-TMK to regulate pyrimidine biosynthesis.

    中文摘要 I SUMMARY IV 誌謝 XII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 附錄目錄 XIX 縮寫表 XX 一、 研究背景 1 1-1 白點症病毒之介紹 1 1-2 病毒調控宿主之代謝以提升核苷酸之合成 2 1-3 白點症病毒誘導之嘧啶合成 4 1-4 研究目的 6 二、材料與方法 9 2-1 白點症病毒基因wRR1 (WSSV228), wRR2 (WSSV243), wdUTPase (WSSV168), wTS (WSSV124) 及wTK-TMK (WSSV454) 之選殖及引子設計 9 2-2 細胞來源與培養 9 2-3 昆蟲細胞表現系統中重組蛋白之表現 10 2-4 實驗動物來源與養殖方法 11 2-5 WSSV病毒來源及感染方式 12 2-6 雙股RNA製備 13 2-7 白點症病毒基因之靜默化 15 2-8 白蝦基因LvGPI之靜默化 15 2-9 RNA萃取 16 2-10 反轉錄PCR (RT-PCR) 17 2-11 即時定量PCR (Real-Time quantitative PCR) 17 2-12 DNA萃取 18 2-13 WSSV病毒基因體複製數檢測 19 2-14 wRR1及wTK-TMK之親和性純化質譜分析(affinity purification-mass spectrometry, AP-MS) 樣本製備 20 2-15 wRR1及wTK-TMK之基因富集分析 (Gene Enrichment Analysis) 23 2-16 wRR1及wTK-TMK之蛋白質-基因關聯網路(protein-to-gene correlation network)分析 23 2-17 酵母菌雙雜合系統 25 2-18 統計方法 28 三、結果 30 3-1 白點症病毒wRR1、wRR2、wdUTPase、wTS與wTK-TMK之基因選殖 30 3-2 wRR1與wRR2與相對應的白蝦同源性基因LvRR1和LvRR2之相似度檢測 30 3-3 wRR1、wRR2、wTS與wTK-TMK在白蝦活體內靜默化,成功抑制wRR1、wRR2、wTS與wTK-TMK基因在病毒基因組複製階段之表現 31 3-4 wRR1與wRR2在活體靜默化對宿主基因LvRR1與LvRR2之表現變化 33 3-5 wRR1、wRR2、wTS與wTK-TMK在白蝦活體內靜默化對WSSV基因表現與基因體複製數之影響 34 3-6 wRR1之基因富集分析 36 3-7 wTK-TMK之基因富集分析 37 3-8 wRR1之蛋白質-基因關聯網路分析 37 3-9 wTK-TMK之蛋白質-基因關聯網路分析 39 3-10 白蝦活體感染WSSV後對宿主基因XP_027212313與LvFBA之表現變化 40 3-11 wRR1、wRR2、wTS與wTK-TMK在活體靜默化對宿主基因XP_027212313與LvFBA之表現變化 41 3-12 透過酵母菌雙雜合系統進行與wTK-TMK有潛在結合能力之WSSV蛋白篩選 42 四、討論 44 參考文獻 55 圖表 68 附錄 108

    何舒莛,白點症病毒於基因體複製時期活化麩醯胺酸代謝作用之氧化與還原路徑,國立成功大學生物科技與產業科學系碩士論文,2018。
    陳有健,白蝦SIRT4在白點症所誘導之代謝變化及病毒複製的參與,國立成功大學生物科技與產業科學系碩士論文,2022。
    陳芷苓,蝦類CAD (氨甲醯磷酸合成酶Ⅱ-天冬氨酸轉氨甲醯-二氫乳清酸酶之融合酵素) 在感染WSSV的蝦隻中參與嘧啶生合成之機制探討,2023。
    曾怡婷,探討蝦類RAS及其下游路徑在感染白點症病毒後代謝路徑轉移過程中扮演之角色,國立成功大學生物科技與產業科學系碩士論文,2018。
    黃明宏,蝦白點症病毒三種基因表現之研究,嘉南藥理科技大學生物科技系博碩士論文,2005。
    蘇美安,雷帕黴素標靶蛋白訊息傳遞路徑在白點症病毒之致病機轉中所扮演之角色,國立成功大學生物科技與產業科學系碩士論文,2013。
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., Molecular Biology of the Cell. 4th edition. Garland Science, New York, 2002. The Universal Features of Cells on Earth.
    Ariav, Y., Ch'ng, J. H., Christofk, H. R., Ron-Harel, N., & Erez, A., Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Science advances, 7(21), eabg6165, 2021.
    Ball A. L., Virus replication strategies. Fields Virology (5th edn), Lippincott Williams & Wilkins, USA, p. 119-139, 2007.
    Ben-Israel, H., & Kleinberger, T., Adenovirus and cell cycle control. Frontiers in bioscience: a journal and virtual library, 7, d1369–d1395, 2002.
    Ben-Sahra, I., Howell, J. J., Asara, J. M., & Manning, B. D., Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science (New York, N.Y.), 339(6125), 1323–1328, 2013.
    Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M., & Manning, B. D., mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science (New York, N.Y.), 351(6274), 728–733, 2016.
    Boehmer, P. E., Lehman, I. R., Herpes simplex virus DNA replication. Annual Review of Biochemistry. 66, 347–384, 1997.
    Bowornsakulwong, T., Charoensapsri, W., Rattanarojpong, T., & Khunrae, P., The expression and purification of WSSV134 from white spot syndrome virus and its inhibitory effect on caspase activity from Penaeus monodon. Protein expression and purification, 130, 123–128, 2017.
    Chabaud, S., Lambert, H., Sasseville, A. M., Lavoie, H., Guilbault, C., Massie, B., Landry, J., & Langelier, Y., The R1 subunit of herpes simplex virus ribonucleotide reductase has chaperone-like activity similar to Hsp27. Federation of European Biochemical Societies letters, 545(2-3), 213–218, 2003.
    Chabes, A., & Thelander, L., Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks. The Journal of biological chemistry, 275(23), 17747–17753, 2000.
    Chen, I. T., Aoki, T., Huang, Y. T., Hirono, I., Chen, T. C., Huang, J. Y., Chang, G. D., Lo, C. F., & Wang, H. C., White spot syndrome virus induces metabolic changes resembling the Warburg effect in shrimp hemocytes in the early stage of infection. Journal of virology, 85(24), 12919–12928, 2011.
    Chen, L. L., Lu, L. C., Wu, W. J., Lo, C. F., & Huang, W. P., White spot syndrome virus envelope protein VP53A interacts with Penaeus monodon chitin-binding protein (PmCBP). Diseases of aquatic organisms, 74(3), 171–178, 2007.
    Codo, A. C., Davanzo, G. G., Monteiro, L. B., de Souza, G. F., Muraro, S. P., Virgilio-da-Silva, J. V., Prodonoff, J. S., Carregari, V. C., de Biagi Junior, C. A. O., Crunfli, F., Jimenez Restrepo, J. L., Vendramini, P. H., Reis-de-Oliveira, G., Bispo Dos Santos, K., Toledo-Teixeira, D. A., Parise, P. L., Martini, M. C., Marques, R. E., Carmo, H. R., Borin, A., Coimbra L. D., Boldrini V. O., Brunetti N. S., Vieira A. S., Mansour E., Ulaf R. G., Bernardes A. F., Nunes T. A., Ribeiro L. C., Palma A. C., Agrela M. V., Moretti M. L., Sposito A. C., Pereira F. B., Velloso L. A., Vinolo M. A. R., Damasio A., Proença-Módena J. L., Carvalho R. F., Mori M. A., Martins-de-Souza D., Nakaya H. I., Farias A. S., Moraes-Vieira, P. M., Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell metabolism, 32(3), 437–446.e5, 2020.
    Cohen, F. S., How Viruses Invade Cells. Biophysical journal, 110(5), 1028–1032, 2016.
    Cotmore, S. F., & Tattersall, P., The autonomously replicating parvoviruses of vertebrates. Advances in virus research, 33, 91–174, 1987
    Desrosiers, V., Barat, C., Breton, Y., Ouellet, M., & Tremblay, M. J., Thymidylate synthase is essential for efficient HIV-1 replication in macrophages. Virology, 561, 47–57, 2021.
    Dong, Q., Smith, K. R., Oldenburg, D. G., Shapiro, M., Schutt, W. R., Malik, L., Plummer, J. B., Mu, Y., MacCarthy, T., White, D. W., McBride, K. M., & Krug, L. T., Combinatorial Loss of the Enzymatic Activities of Viral Uracil-DNA Glycosylase and Viral dUTPase Impairs Murine Gammaherpesvirus Pathogenesis and Leads to Increased Recombination-Based Deletion in the Viral Genome. mBio, 9(5), e01831-18, 2018.
    Duensing, S., & Münger, K., Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. International journal of cancer, 109(2), 157–162, 2004.
    Gill, M. B., Kutok, J. L., & Fingeroth, J. D., Epstein-Barr virus thymidine kinase is a centrosomal resident precisely localized to the periphery of centrioles. Journal of virology, 81(12), 6523–6535, 2007.
    Goldstein, D. J., & Weller, S. K., Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. Journal of virology, 62(1), 196–205, 1988.
    Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O’Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., Kim, M., Haas P., Polacco B. J., Braberg H., Fabius J. M., Eckhardt M., Soucheray M., Bennett M. J., Cakir M., McGregor M. J., Li Q., Meyer B., Roesch F., Vallet T., Mac Kain A., Miorin L., Moreno E., Naing Z. Z. C., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I. T., Melnyk J. E., Chorba J. S., Lou K, Dai S. A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C. J. P., Perica T., Pilla K. B., Ganesan S. J., Saltzberg D. J., Rakesh R., Liu X., Rosenthal S. B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X. P., Liu Y., Wankowicz S. A., Bohn M., Safari M., Ugur F. S., Koh C., Savar N. S., Tran Q. D., Shengjuler D., Fletcher S. J., O'Neal M. C., Cai Y., Chang J. C. J., Broadhurst D. J., Klippsten S., Sharp P. P., Wenzell N. A., Kuzuoglu-Ozturk D., Wang H. Y., Trenker R., Young J. M., Cavero D. A., Hiatt J., Roth T. L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R. M., Frankel A. D., Rosenberg O. S., Verba K. A., Agard D. A., Ott M., Emerman M., Jura N., von Zastrow M., Verdin E., Ashworth A., Schwartz O., d'Enfert C., Mukherjee S., Jacobson M., Malik H. S., Fujimori D. G., Ideker T., Craik C. S., Floor S. N., Fraser J. S., Gross J. D., Sali A., Roth B. L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., García-Sastre A., Shokat K. M., Shoichet B. K., Krogan, N. J., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468, 2020.
    Guo, X., Wu, S., Li, N., Lin, Q., Liu, L., Liang, H., Niu, Y., Huang, Z., & Fu, X., Accelerated Metabolite Levels of Aerobic Glycolysis and the Pentose Phosphate Pathway Are Required for Efficient Replication of Infectious Spleen and Kidney Necrosis Virus in Chinese Perch Brain Cells. Biomolecules, 9(9), 440, 2019.
    Han, F., Xu, J., & Zhang, X., Characterization of an early gene (wsv477) from shrimp white spot syndrome virus (WSSV). Virus genes, 34(2), 193–198, 2007.
    Han, J., Deng, X., Sun, R., Luo, M., Liang, M., Gu, B., Zhang, T., Peng, Z., Lu, Y., Tian, C., Yan, Y., & Luo, Z., GPI Is a Prognostic Biomarker and Correlates With Immune Infiltrates in Lung Adenocarcinoma. Frontiers in oncology, 11, 752642, 2021.
    Heineman, T. C., & Cohen, J. I., Deletion of the varicella-zoster virus large subunit of ribonucleotide reductase impairs growth of virus in vitro. Journal of virology, 68(5), 3317–3323, 1994.
    Hoa, T. T., Zwart, M. P., Phuong, N. T., Oanh, D. T., de Jong, M. C., & Vlak, J. M., Indel-II region deletion sizes in the white spot syndrome virus genome correlate with shrimp disease outbreaks in southern Vietnam. Diseases of aquatic organisms, 99(2), 153–162, 2012.
    Huang, C., Zhang, X., Lin, Q., Xu, X., Hu, Z., & Hew, C. L., Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Molecular & cellular proteomics : MCP, 1(3), 223–231, 2002.
    Huang, daW., Sherman, B. T., & Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44–57, 2009.
    Huang, H. J., Tang, S. L., Chang, Y. C., Wang, H. C., Ng, T. H., Garmann, R. F., Chen, Y. W., Huang, J. Y., Kumar, R., Chang, S. H., Wu, S. R., Chao, C. Y., Matoba, K., Kenji, I., Gelbart, W. M., Ko, T. P., Wang, H. A., Lo, C. F., Chen, L. L., & Wang, H. C., Multiple Nucleocapsid Structural Forms of Shrimp White Spot Syndrome Virus Suggests a Novel Viral Morphogenetic Pathway. International journal of molecular sciences, 24(8), 7525, 2023.
    Irwin, C. R., Hitt, M. M., & Evans, D. H., Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Frontiers in oncology, 7, 229, 2017.
    Kim, J., Hu, Z., Cai, L., Li, K., Choi, E., Faubert, B., Bezwada, D., Rodriguez-Canales, J., Villalobos, P., Lin, Y. F., Ni, M., Huffman, K. E., Girard, L., Byers, L. A., Unsal-Kacmaz, K., Peña, C. G., Heymach, J. V., Wauters, E., Vansteenkiste, J., Castrillon, D. H., Chen B. P. C., Wistuba I., Lambrechts D., Xu J., Minna J. D., DeBerardinis, R. J., CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature, 546(7656), 168–172, 2017.
    Kollareddy, M., Dimitrova, E., Vallabhaneni, K. C., Chan, A., Le, T., Chauhan, K. M., Carrero, Z. I., Ramakrishnan, G., Watabe, K., Haupt, Y., Haupt, S., Pochampally, R., Boss, G. R., Romero, D. G., Radu, C. G., & Martinez, L. A., Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nature communications, 6, 7389, 2015.
    Kumar, R., Huang, J.Y., Ng, Y.S., Chen, C.Y., and Wang, H.C., The regulation of shrimp metabolism by the white spot syndrome virus (WSSV). Reviews in Aquaculture 14, 1150-1169, 2021.
    Landolfo, S., Gariglio, M., Gribaudo, G., & Lembo, D., The human cytomegalovirus. Pharmacology & therapeutics, 98(3), 269-297, 2003.
    Langelier, Y., Bergeron, S., Chabaud, S., Lippens, J., Guilbault, C., Sasseville, A. M., Denis, S., Mosser, D. D., & Massie, B., The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. The Journal of general virology, 83(Pt 11), 2779–2789, 2002.
    Lembo, D., & Brune, W., Tinkering with a viral ribonucleotide reductase. Trends in biochemical sciences, 34(1), 25–32, 2009.
    Lembo, D., Donalisio, M., Hofer, A., Cornaglia, M., Brune, W., Koszinowski, U., Thelander, L., & Landolfo, S., The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. Journal of virology, 78(8), 4278–4288, 2004.
    Leu, J. H., Wang, H. C., Kou, G. H., & Lo, C. F., Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Developmental and comparative immunology, 32(5), 476–486, 2008.
    Lévy, P., & Bartosch, B. Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene, 35(32), 4155–4164, 2016.
    Li, F., Li, M., Ke, W., Ji, Y., Bian, X., & Yan, X., Identification of the immediate-early genes of white spot syndrome virus. Virology, 385(1), 267–274, 2009.
    Liberti, M.V., and Locasale, J.W., The Warburg Effect: How Does it Benefit Cancer Cells? Trends in Biochemical Sciences 41, 211-218, 2016.
    Lin, S. T., Chang, Y. S., Wang, H. C., Tzeng, H. F., Chang, Z. F., Lin, J. Y., Wang, C. H., Lo, C. F., & Kou, G. H., Ribonucleotide reductase of shrimp white spot syndrome virus (WSSV): expression and enzymatic activity in a baculovirus/insect cell system and WSSV-infected shrimp. Virology, 304(2), 282–290, 2002. 
    Liu, G., Wang, N., Zhang, C., Li, M., He, X., Yin, C., Tu, Q., Shen, X., Zhang, L., Lv, J., Wang, Y., Jiang, H., Chen, S., Li, N., Tao, Y., & Yin, H., Fructose-1,6-Bisphosphate Aldolase B Depletion Promotes Hepatocellular Carcinogenesis Through Activating Insulin Receptor Signaling and Lipogenesis. Hepatology (Baltimore, Md.), 74(6), 3037–3055, 2021.
    Liu, J., Zhang, C., Hu, W., & Feng, Z., Tumor suppressor p53 and metabolism. Journal of Molecular Cell Biology, 11(4), 284–292, 2018.
    Liu, L. Y., Tseng, H. I., Lin, C. P., Lin, Y. Y., Huang, Y. H., Huang, C. K., Chang, T. H., & Lin, S. S., High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant & cell physiology, 55(5), 942–957, 2014.
    Liu, Y. C., Li, F., Handler, J., Huang, C. R., Xiang, Y., Neretti, N., Sedivy, J. M., Zeller, K. I., & Dang, C. V., Global regulation of nucleotide biosynthetic genes by c-Myc. PloS one, 3(7), e2722, 2008.
    Lo, C.F., Ho, C.H., Peng, S.E., Chen, C.H., Hsu, H.C., Chiu, Y.L., Chang, C.F., Liu, K.F., Wang, C.H., Kou, G.H., White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Diseases of Aquatic Organisms 27. 215-225, 1996.
    Ma, Y. T., Xing, X. F., Dong, B., Cheng, X. J., Guo, T., Du, H., Wen, X. Z., & Ji, J. F., Higher autocrine motility factor/glucose-6-phosphate isomerase expression is associated with tumorigenesis and poorer prognosis in gastric cancer. Cancer management and research, 10, 4969–4980, 2018.
    Mayer, K. A., Stöckl, J., Zlabinger, G. J., & Gualdoni, G. A., Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. Frontiers in immunology, 10, 1533, 2019.
    McGeoch, D. J., Rixon, F. J., & Davison, A. J., Topics in herpesvirus genomics and evolution. Virus research, 117(1), 90–104, 2006.
    Mullen, N. J., & Singh, P. K., Nucleotide metabolism: a pan-cancer metabolic dependency. Nature reviews. Cancer, 23(5), 275–294, 2023.
    Ng, Y. S., Chen, C. Y., Cheng, S. W., Tan, Y. K., Lin, S. S., Senapin, S., Sangsuriya, P., & Wang, H. C., WSSV early protein WSSV004 enhances viral replication by suppressing LDH activity. International journal of biological macromolecules, 271(Pt 1), 132482, 2024.
    Otta S. K., Host and virus protein interaction studies in understanding shrimp virus gene function. Indian journal of virology : an official organ of Indian Virological Society, 23(2), 184–190, 2012.
    Patrone, M., Percivalle, E., Secchi, M., Fiorina, L., Pedrali-Noy, G., Zoppé, M., Baldanti, F., Hahn, G., Koszinowski, U. H., Milanesi, G., & Gallina, A., The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. The Journal of general virology, 84(Pt 12), 3359–3370, 2003.
    Perrin-Cocon, L., Diaz, O., Jacquemin, C., Barthel, V., Ogire, E., Ramière, C., André, P., Lotteau, V., & Vidalain, P. O., The current landscape of coronavirus-host protein-protein interactions. Journal of translational medicine, 18(1), 319, 2020.
    Qian, W., Kashuba, E., Magnusson, K. P., Pokrovskaja, K., Okan, I., Klein, G., Wiman, K.G., Role of p53 mutation in polyomavirus-induced tumorigenesis. Journal of General Virology. 78 (Pt. 4), 893–903, 1997.
    Rampersad, S., & Tennant, P., Replication and Expression Strategies of Viruses. Viruses, 55–82, 2018.
    Sanchez, E. L., Carroll, P. A., Thalhofer, A. B., & Lagunoff, M., Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PloS pathogens, 11(7), e1005052., 2015.
    Sangsuriya, P., Charoensapsri, W., Sutthangkul, J., Senapin, S., Hirono, I., Tassanakajon, A., & Amparyup, P., A novel white spot syndrome virus protein WSSV164 controls prophenoloxidases, PmproPOs in shrimp melanization cascade. Developmental and comparative immunology, 86, 109–117, 2018.
    Sangsuriya, P., Huang, J. Y., Chu, Y. F., Phiwsaiya, K., Leekitcharoenphon, P., Meemetta, W., Senapin, S., Huang, W. P., Withyachumnarnkul, B., Flegel, T. W., & Lo, C. F., Construction and application of a protein interaction map for white spot syndrome virus (WSSV). Molecular & cellular proteomics : MCP, 13(1), 269–282, 2014.
    Saravanan, K., Praveenraj, J., Kiruba-Sankar, R., Devi, V., Biswas, U., Kumar, T. S., Sudhagar, A., El-Matbouli, M., & Kumar, G., Co-Infection of Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) and White Spot Syndrome Virus (WSSV) in the Wild Crustaceans of Andaman and Nicobar Archipelago, India. Viruses, 13(7), 1378, 2021.
    Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W., DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic acids research, 50(W1), W216–W221, 2022.
    Simabuco, F. M., Morale, M. G., Pavan, I. C. B., Morelli, A. P., Silva, F. R., & Tamura, R. E., p53 and metabolism: from mechanism to therapeutics. Oncotarget, 9(34), 23780–23823, 2018.
    Stillman B., Deoxynucleoside triphosphate (dNTP) synthesis and destruction regulate the replication of both cell and virus genomes. Proceedings of the National Academy of Sciences of the United States of America, 110(35), 14120–14121, 2013.
    Sun, Y., & Conner, J., The U28 ORF of human herpesvirus-7 does not encode a functional ribonucleotide reductase R1 subunit. The Journal of general virology, 80 (Pt 10), 2713–2718, 1999.
    Tenser R. B., Role of herpes simplex virus thymidine kinase expression in viral pathogenesis and latency. Intervirology, 32(2), 76–92, 1991.
    Thai, M., Graham, N. A., Braas, D., Nehil, M., Komisopoulou, E., Kurdistani, S. K., McCormick, F., Graeber, T. G., Christofk, H. R., Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metabolism. 19, 694–701, 2014.
    Thaker, S.K., Ch’ng J., Christofk H.R., Viral hijacking of cellular metabolism. Biomed Central Genomics Biology. 17(1), 59, 2019.
    Topalis, D., Andrei, G., & Snoeck, R., The large tumor antigen: a "Swiss Army knife" protein possessing the functions required for the polyomavirus life cycle. Antiviral research, 97(2), 122–136, 2013.
    Tsai, M. F., Yu, H. T., Tzeng, H. F., Leu, J. H., Chou, C. M., Huang, C. J., Wang, C. H., Lin, J. Y., Kou, G. H., & Lo, C. F., Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology, 277(1), 100–110, 2000.
    Tsai, J. M., Wang, H. C., Leu, J. H., Hsiao, H. H., Wang, A. H., Kou, G. H., & Lo, C. F., Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. Journal of virology, 78(20), 11360–11370, 2004.
    Tsai, J. M., Wang, H. C., Leu, J. H., Wang, A. H., Zhuang, Y., Walker, P. J., Kou, G. H., & Lo, C. F., Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. Journal of virology, 80(6), 3021–3029, 2006.
    Tzeng, H. F., Chang, Z. F., Peng, S. E., Wang, C. H., Lin, J. Y., Kou, G. H., & Lo, C. F., Chimeric polypeptide of thymidine kinase and thymidylate kinase of shrimp white spot syndrome virus: thymidine kinase activity of the recombinant protein expressed in a baculovirus/insect cell system. Virology, 299(2), 248–255, 2002.
    Valvezan, A. J., Turner, M., Belaid, A., Lam, H. C., Miller, S. K., McNamara, M. C., Baglini, C., Housden, B. E., Perrimon, N., Kwiatkowski, D. J., Asara, J. M., Henske, E. P., & Manning, B. D., mTORC1 Couples Nucleotide Synthesis to Nucleotide Demand Resulting in a Targetable Metabolic Vulnerability. Cancer cell, 32(5), 624–638.e5, 2017.
    Verbruggen, B., Bickley, L. K., van Aerle, R., Bateman, K. S., Stentiford, G. D., Santos, E. M., & Tyler, C. R., Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments. Viruses, 8(1), 23, 2016.
    Villa, E., Ali, E. S., Sahu, U., Ben-Sahra, I., Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers 11, 2019.
    Wang, H. C., Hirono, I., Maningas, M. B. B., Somboonwiwat, K., Stentiford, G., & Ictv Report Consortium., ICTV Virus Taxonomy Profile: Nimaviridae. The Journal of general virology, 100(7), 1053–1054, 2019.
    Wang, H. C., Wang, H. C., Kou, G. H., Lo, C. F., & Huang, W. P., Identification of icp11, the most highly expressed gene of shrimp white spot syndrome virus (WSSV). Diseases of aquatic organisms, 74(3), 179–189, 2007.
    Wang, H. C., Wang, H. C., Ko, T. P., Lee, Y. M., Leu, J. H., Ho, C. H., Huang, W. P., Lo, C. F., & Wang, A. H., White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. Proceedings of the National Academy of Sciences of the United States of America, 105(52), 20758–20763, 2008.
    Wang, Y., Wang, W., Xu, L., Zhou, X., Shokrollahi, E., Felczak, K., van der Laan, L. J., Pankiewicz, K. W., Sprengers, D., Raat, N. J., Metselaar, H. J., Peppelenbosch, M. P., & Pan, Q., Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication. Antimicrobial agents and chemotherapy, 60(5), 2834–2848, 2016.
    Watanabe, H., Takehana, K., Date, M., Shinozaki, T., & Raz, A., Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer research, 56(13), 2960–2963, 1996.
    Webb, B. A., Forouhar, F., Szu, F. E., Seetharaman, J., Tong, L., & Barber, D. L., Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature, 523(7558), 111–114, 2015.
    Wu, J., Lin, Q., Lim, T. K., Liu, T., & Hew, C. L., White spot syndrome virus proteins and differentially expressed host proteins identified in shrimp epithelium by shotgun proteomics and cleavable isotope-coded affinity tag. Journal of virology, 81(21), 11681–11689, 2007.
    Xie, Y., Wu, L., Wang, M., Cheng, A., Yang, Q., Wu, Y., Jia, R., Zhu, D., Zhao, X., Chen, S., Liu, M., Zhang, S., Wang, Y., Xu, Z., Chen, Z., Zhu, L., Luo, Q., Liu, Y., Yu, Y., Zhang, L., Chen, X., Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Frontiers in microbiology, 10, 941, 2019.
    Xu, L., Chen, Z., Zhang, Y., Cui, L., Liu, Z., Li, X., Liu, S., & Li, H., P53 maintains gallid alpha herpesvirus 1 replication by direct regulation of nucleotide metabolism and ATP synthesis through its target genes. Frontiers in microbiology, 13, 1044141, 2022.
    Yang, F., He, J., Lin, X., Li, Q., Pan, D., Zhang, X., & Xu, X., Complete genome sequence of the shrimp white spot bacilliform virus. Journal of virology, 75(23), 11811–11820, 2001.
    Yi, Z., Pan, T., Wu, X., Song, W., Wang, S., Xu, Y., Rice, C. M., Macdonald, M. R., & Yuan, Z., Hepatitis C virus co-opts Ras-GTPase-activating protein-binding protein 1 for its genome replication. Journal of virology, 85(14), 6996–7004, 2011.
    Zang, K., Li, F., & Ma, Q., The dUTPase of white spot syndrome virus assembles its active sites in a noncanonical manner. The Journal of biological chemistry, 293(3), 1088–1099, 2018.

    無法下載圖示 校內:2029-08-29公開
    校外:2029-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE