| 研究生: |
黃靖穎 Huang, Ching-Ying |
|---|---|
| 論文名稱: |
高溫質子交換膜燃料電池用之含氟聚苯咪唑/多壁奈米碳管奈米複合材料合成與性質之研究 Synthesis and Properties of Fluorine-containing Polybenzimidazole/MWNTs Nanocomposites for High-Temperature PEMFC |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 質子交換膜燃料電池 、聚苯咪唑 、奈米複合材料 |
| 外文關鍵詞: | PEMFC, PBI, nanocomposite |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用3,3’-diaminobenzidine、2, 2-bis(4-carboxyphenyl) hexafluoropropane兩種單體合成分子結構中帶有含氟基團之聚苯咪唑(Polybenzimidazole,PBI)高分子,並以FTIR、1H-NMR分析鑑定此含氟PBI (HFPBI)之組成與結構。將市售之MWNTs-COOH改質為MWNTs-imi,並以FTIR、XPS、拉曼光譜分析鑑定其結構。將MWNTs-imi以不同比例混摻入HFPBI中,製備為PBI/MWNTs-imi奈米複合材薄膜由於改質後之奈米碳管表面具有imidazole官能基,可強化有機高分子與無機填充材之間的交互作用力。由場發射掃描式電子顯微鏡分析可看出MWNTs-imi在PBI中具有良好的相容性與分散性。PBI本身具有堅硬的結構,因此擁有良好的熱穩定性,經由TGA分析添加MWNTs-imi之PBI複合膜材,發現加入碳管並不會影響PBI之熱穩定性。此PBI複合膜材的機械性質與摻雜磷酸後之機械性質皆能藉由奈米碳管的添加而有大幅的改善。在質子導電率方面,導電度隨著溫度和摻雜磷酸之含量增加而提升,在PBI中添加無機物通常會造成質子導電率下降,但本研究在添加MWNTs-imi後,含浸磷酸之PBI奈米複合材薄膜的導電度並不會降低。
First, an organosoluble fluorine-containing polybenzimidazole (HFPBI) was synthesized, using 3, 3’ -diaminobenzidine and 2,2-bis(4-carboxyphenyl)-hexafluoropropane as monomers. The structure of HFPBI was characterized by FT-IR, 1H-NMR. The 5 % weight loss temperature(T5d) of the polymer was at 518 °C.
Second, MWNTs-imi were prepared from commercially available MWNTs-COOH and 1-(3-Aminopropyl)imidazole. The functionalized MWNTs were then characterized by FT-IR, XPS analysis, Raman spectroscopy and TGA.
PBI/MWNTs-imi nanocomposite membranes were then prepared by solution-casting. SEM, TGA, tensile tests and AC impedance were used to characterize the properties of the nanocomposites. SEM analysis indicated that MWNTs-imi were well-dispersed and showed good compatibility with PBI matrix. The thermal stability of PBI/MWNTs-imi was great, T5d was at about 527 °C. In comparison with pure PBI, both the elastic modulus and tensile strength were enhanced after adding MWNTs-imi. From the results of four-point probe detector analysis, the electrical conductivity of the nanocomposite membrane was low, so there was thus no risk of short-circuit during the fuel cell operation when the MWNTs-imi content was lower than 1.0 wt%. Finally, the proton conductivity of the acid-doped nanocomposite membrane was almost the same as the pure acid-doped PBI membrane.
1. Word Oil Outlook 2007, 2007, Organization of the Petroleum Exporting Countries.
2. 黃鎮江,燃料電池,滄海書局 (2008).
3. V. A. Paganin, C. L. F. Oliveira, E. A. Ticianelli, T. E. Springer, E. R. Gonzalez, Electrochimica Acta, 43 (1998) 3761.
4. 林昇佃等著,燃料電池:新世紀能源,滄海書局 (2004).
5. 衣寶廉,燃料電池-原理與應用,五南圖書出版公司 (2005).
6. K. Kordesch, G. Simader, Fuel Cells and Their Application, 1996, VCH, New York.
7. 鄭力誠,高溫質子交換膜燃料電池用高分子電解質膜的合成與性質之研究,國立成功大學材料科學及工程學系碩士論文 (2007).
8. B. Smitha, S. Sridhar, A. A. Khan, Journal of Membrane Science, 259 (2005) 10.
9. Q. F. Li, R. H. He, J. O. Jensen, N. J. Bjerrum, Chemistry of Materials, 15 (2003) 4896.
10. J. L. Zhang, Y. H. Tang, C. J. Song, J. J. Zhang, Journal of Power Sources, 172 (2007) 163.
11. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A. B. Bocarsly, Journal of Power Sources, 103 (2001) 1.
12. D. J. Jones, J. Roziere, Journal of Membrane Science, 185 (2001) 41.
13. Q. F. Li, R. H. He, J. O. Jensen, N. J. Bjerrum, Fuel Cells, 4 (2004) 147.
14. J. A. Asensio, P. Gomez-Romero, Fuel Cells, 5 (2005) 336
15. N. W. Deluca, Y. A. Elabd, Journal of Polymer Science: Part B: Polymer Physics, 44 (2006) 2201.
16. J. C. Lassegues, Cambridge University Press, (1992) 311.
17. M. Schuster, T. Rager, A. Noda, K. D. Kreuer, J. Maier, Fuel Cells, 5 (2005) 355.
18. F. J. R. Savadogo, J. Varela, Journal of New Materials for Electrochemical Systems, 4, 2 (2001) 93.
19. B. S. Pivovar, Polymer, 47 (2006) 4194.
20. S. M. Aharoni, A. J. Signorelli, Journal of Applied Polymer Science, 23, 9 (1979) 2653.
21. Q. F. Li, J. O. Jensena, R. F. Savinell, N. J. Bjerruma, Progress in Polymer Science,34 (2009) 449.
22. P. E. Cassidy, Thermally stable polymers, 1980, Marcel Dekker, Inc., New York.
23. R. F. Kovar, F. E. Arnold, Journal of Polymer Science Part A: Polymer Chemistry, 14 (1976) 2807.
24. J. K. Kallitsis, N. Gourdoupi, Journal of New Materials for Electrochemical Systems, 6 (2003) 217.
25. M. K. Daletou, N. Gourdoupi, J. K. Kallitsis, Journal of Membrane Science, 252 (2005) 115.
26. L. X. Xiao, H. F. Zhang, E. Scanlon, L. S. Ramanathan, E. W. Choe, D. Rogers et al., Chemistry of Materials, 17 (2005) 5328.
27. A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris et al., Journal of Power Sources, 160 (2006) 175.
28. Q. F. Li, O. J. Jensen, Membranes for energy conversion, 6 (2007) 61.
29. S. B. Qing, W. Huang, D. Y. Yan, European Polymer Journal, 41 (2005) 1589.
30. S. Yu, L. Xiao, B. C. Benicewicz, Fuel Cells, 8 (2008) 156.
31. S. W. Chuang, S. L. C. Hsu, Journal of Polymer Science Part A: Polymer Chemistry, 44 (2006) 4508.
32. S. C. Kumbharkar, P. B. Karadkar, U. K. Kharul, Journal of Membrane Science, 286 (2006) 161.
33. S. B. Qing, W. Huang, D. Y. Yan, Reactive and Functional Polymers, 66 (2006) 219.
34. J. A. Kerres, Fuel Cells, 5 (2005) 230.
35. L. J. Hobson, Y. Nakano, H. Ozu, S. Hayase, Journal of Power Sources, 104 (2002) 79.
36. H. J. Davis, N.W. Thomas, US patent, 4,020,142 (1977).
37. D. J. Jones, J. Roziere, Handbook of fuel cells, 3 (2003) 447.
38. T. Ogoshi, Y. Chujo, Compos Interface, 11 (2005) 539.
39. S. W. Chuang, S. L. C. Hsu, C. L. Hsu, Journal of Power Sources, 168 (2007) 172.
40. S. L. C. Hsu, K. C. Chang, Polymer,43 (2002) 4097.
41. M. F. H. Schuster, W. H. Meyer, Annual Review of Materials Research, 33 (2003) 233.
42. 李軒誠,質子交換膜燃料電池研究—MEA的製程與應用,國立中山大學機械工程研究所碩士論文 (2001).
43. B. S. Pivovar, Y. Wang, E. L. Cussler, Journal of Membrane Science, 154 (1999) 155.
44. Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, Journal of The Electrochemical Society, 151, 1 (2004) A8.
45. H. Pu, G. Liu, Polymer for advanced technologies, 15 (2004) 726.
46. R. Bouchet, S. Miller, M. Duclot, J. L. Souquet, Solid State Ionics, 145 (2001) 69.
47. K. D. Kreuer, R. Albrecht, W. Weppner, Angewandte Chemie International Edition in English, 21, 3 (1982) 208.
48. J. D. Grotthuss, Ann. Chim. LVIII, 58 (1806) 54.
49. J. M. Bockris, A. K. N. Reddy, Modern Electrochemistry, 1990, Plenum Press, New York.
50. X. Glipa, B. Bonnet, D. J. Jones, J. Roziere, Journal of material chemistry, 9 (1999) 3045.
51. R. Bouchet, E. Siebert, Solid State Ionics, 118, (1999) 287.
52. 莊士緯,高溫質子交換膜燃料電池用之含氟聚苯咪唑合成及性質之研究,國立成功大學材料科學及工程學系博士論文 (2008).
53. A. Usuki, M. Kawasumi, Y. Kojima, Journal Of Materials Research, 7 (1991) 856.
54. P. B. Messersmith, E. P. Giannelis, Journal of Polymer Science Part A: Polymer Chemistry, 33 (1995) 1047.
55. S. D. Burnside, E. P. Giannelis, Chemistry of Materials, 7 (1995) 1597.
56. H. Ishida, S. Campbell, J. Blackwell, Chemistry of Materials, 12 (2000) 1260.
57. 樂文禮,聚醯亞胺奈米矽氧複合材料選擇性封裝之研究,成功大學化學工程研究所碩士論文 (2002).
58. A. B. Morgan, J. W. Gilman, C. L. Jackson, Macromolecules, 34 (2001) 2735.
59. H. L. Tyan, K. H. Wei, T. E. Hsieh, Journal of Polymer Science Part B: Polymer Physics, 38 (2000) 2873.
60. A. Gu, F. C. Chang, Journal of Applied Polymer Science, 79 (2001) 289.
61. T. Agag, T. Koga, T. Takeichi, Polymer, 42 (2001) 3399.
62. K. A. Carrado, L. Xu, Chemistry of Materials, 10 (1998) 1440.
63. S. Iijima, Nature, 354 (1991) 56.
64. R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science, 297 (2002) 787.
65. M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, Physical Review Letters, 84 (2000) 5552.
66. H. Huang, C. Liu, Y. Wu, S. Fan. Advanced Materials, 17 (2005) 1652.
67. J. E. Peters, D. V. Papavassiliou, B. P. Grady, Macromolecules, 41 (2008) 7274.
68. R. Ramasubramaniam, J. Chen, H. Liu, Applied Physics Letters, 83 (2003) 2928.
69. Z. M. Dang, M. J. Jiang, D. Xie, S. H. Yao, L. Q. Zhang, J. Bai, Journal of Applied Physics, 104 (2008) 024114.
70. 陳碩穎,高分子奈米碳管複合材料之製備及其電熱性質之研究,國立成功大學航空太空工程研究所碩士論文 (2008).
71. N. Coleman, U. Khan, Y. K. Gunko, Advanced Materials, 18 (2006) 689.
72. L. P. Yang, C. Y. Pan, Macromolecular Chemistry and Physics, 209 (2008) 783.
73. A. Star, D. W. Steuerman, J. R. Heath, J. F. Stoddart, Angewandte Chemie International Edition, 41 (2002) 2508.
74. B. X. Yang, K. P. Pramoda, G. Q. Xu, S. H. Goh, Advanced Functional Materials, 17 (2007) 2062.
75. H. Kong, C. Gao, D. Yan, Journal of the American Chemical Society, 126 (2004) 412.
76. H. Shao, Z. Shi, J. Fang, J. Yin, Polymer, 50 (2009) 5987.
77. 丁大文,SEBS/PPO摻混之有序-無序轉變,逢甲大學紡織工程研究所碩士論文 (2003).
78. C. M. A. Brett, A. M. O. Brett, Electrochemistry-Principles, Methods and Applications, 1993, Oxford, New York.
79. 楊昇晃,微型燃料電池設計、製作與電化學組抗量測分析,中山大學機械與機電工程所碩士論文 (2005).
80. 陳盈助,電解液配方對鋰離子電池性能之研究,成功大學化工所碩士論文 (2002).
81. 陸瑞東,以聯氨還原製備質子交換膜燃料電池鉑鎳/碳陰極之研究,國立成功大學化學工程學系碩士論文 (2005).
82. 林賜岱,直接甲醇燃料電池陽極反應機制之研究,國立台灣科技大學化學工程系碩士論文 (2002).
83. 蔡淑慧,拉曼光譜在奈米碳管檢測上之應用,奈米通訊,第十二卷,第二期 (2005).
84. A. Jorio, M. A. Pimenta, A. G. S. Filho, R. Saito, G. Dresselhaus, M. S. Dresselhaus, New Journal of Physics, 5 (2003) 139.1.
85. 汪建民,材料分析,中國材料科學學會 (2006).
86. F. L. Hedberg, C. S. Marvel, Journal of Polymer Science : Polymer Chemistry Edition, 12 (1974) 1823.
87. K. Y. Wang, T. S. Chung, Journal of Membrane Science, 281 (2006) 307.
88. J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, M. Litt, Journal of the Electrochemical Society, 142 (1995) L121.
89. H. Vogel, C. S. Marvel, Journal of Polymer Science, 50 (1961) 511.
90. Y. Imai, K. Uno, Y. Iwakura, Macromolecular Chemistry, 83 (1965) 179.
91. J. A. Asensio, S. Borros, P. G. Romero, Journal of Membrane Science, 241 (2004) 89.
92. M. Litt, R. Ameri, Y. Wang, R. Savinell, J. Wainwright, Mater. Res. Soc. Symp. Proc, 548 (1999) 313.
93. S. H. Hsiao, Y. H. Chang, European Polymer Journal, 40 (2004) 1749.
94. V. Kute, S. Banerjee, Journal of Applied Polymer Science, 103 (2007) 3025.
95. J. A. Asensio, S. Borro's, P. Go'mez-Romero, Journal of Polymer Science: Part A: Polymer Chemistry, 40 (2002) 3703.
96. L. Ojamäe, Journal of Colloid and Interface Science, 296 (2006) 71.
97. H. J. Xu, K. C. Chen, X. X. Guo, J. H. Fang, J. Yin, Polymer, 48 (2007) 5556.
98. A. Sannigrahi, D. Arunbabu, R. M. Sankar, T. Jana, Journal of Physical Chemistry B, 111 (2007) 12124.
99. M. Okamoto, T. Fujigaya, N. Nakashima, Advanced Functional Materials, 18 (2008) 1776.
100 . T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, Chemistry of Materials,17 ( 2005) 1290.
101 . M. J. Park, J. K. Lee, B. S. Lee, Y. W. Lee, I. S. Choi, S. G. Lee, Chemistry of Materials, 18 (2006) 1546.
102 . L. Wan, X. Wang, S. Wang, S. Li, Q. Li, R. Tian, M. Li, Journal of Physical Organic Chemistry, 22 (2009) 331.
103 . S. R. Samms, S.Wasmus, R. F. Savinell, Journal of the electrochemical society, 143 (1996) 1225.
104 . Q. Zhang, J. Li, X. Zhao, D. Chen, Polymer International, 58 (2009) 557.
105 . S. H. Liao, C. C. Weng, C. Y. Yen, M. C. Hsiao, C. C. M. Ma, M. C. Tsai, A. Su, M. Y. Yen, Y. F. Lin, P. L. Liu, Journal of Power Sources, 195 (2010) 263.
106 . Y. H. Liu, B.Yi, Z. G. Shao, D. Xing, H. Zhang, Electrochemical and Solid-State Letters, 9 (2006) A356.
校內:2021-12-31公開