簡易檢索 / 詳目顯示

研究生: 陳玉淵
Chen, Yu-Yuan
論文名稱: 車載隨意行動網路中緊急訊息傳遞的廣播協定研究
Study of Broadcast Protocols for Emergency Message in Vehicular Ad-Hoc Networks (VANET)
指導教授: 蘇賜麟
Su, Szu-Lin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: Broadcast protocolVANETmulti-hopURLLCV2X
外文關鍵詞: Broadcast protocol, VANET, multi-hop, URLLC, V2X
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在5G發展中,有三個主要的應用情境,分別為 eMBB、uRLLC 以及 mMTC,各自場景有不同的要求/技術需要克服。其中,uRLLC (ultra-Reliable and Low Latency Communications) 的情境強調超高可靠性以及低延遲的應用,而車聯網 (V2X) 便是此情境下主要應用之一。

    車聯網的一項重要應用為透過車輛間通訊將緊急特殊訊息以多躍 (multi-hop) 方式通知後方車輛,使其能及早回應,以提高用路安全及效率。此應用主要是透過廣播方式進行訊息傳遞,但廣播有幾個基本的特性/問題需要克服: 第一,廣播由於沒有特定的目的地,一般訊息接收者不會回傳ACK 給傳送者,故其通訊可靠性無法確認;第二,由於緊急訊息是以廣播且多躍方式傳輸,若無適當機制,將產生不必要的轉傳,不只浪費通道資源,並將引發嚴重碰撞問題,形成所謂的「廣播風暴」(Broadcast storm)。因此,如何設計廣播協定來確保低延遲及高可靠性,並將緊急訊息傳遠是主要研究議題。

    在本論文中,我們模擬比較了幾種廣播抑制(Broadcast suppression)協定(包括先透過特殊Black-burst訊號選出指定的轉傳者)的可靠性、延遲即傳輸距離等性能表現後,發現減少轉傳者雖然能夠降低廣播過程中的碰撞機率,但可能會損失系統可靠度,如何調整轉傳者是重要設計問題。因此,本論文提出一整合廣播抑制技術,包含加入backoff 的機制與透過side-acknowledge的方式確保不損害系統可靠度下,訊息能順利傳遞。由模擬結果得知,和其他已知方法比較,本論文所提技術在延遲沒有明顯增加下,可靠度能夠大幅提升。

    In the development of 5G, there are three main application scenarios, namely eMBB, uRLLC and mMTC, and each scenario has different difficulties to overcome. Among them, the uRLLC (ultra-Reliable and Low Latency Communications) scenario emphasizes ultra-high reliability and low latency applications, where V2X is one of the main applications in this scenario.

    “Emergency message Alert” is one of important application in V2X. This application is to notify the subsequently vehicles the alert message primarily in broadcast and multi-hop manner. However, the “Broadcast storm” problem is an important issue that need to be overcome in broadcast process. If there is no proper mechanism to determine whether to forward the message, it will cause unnecessary transmission and serious collision. Thus, how to design a broadcast protocol to ensure low latency and high reliability and make the messages be delivered far is the main research topic.

    In this thesis, we simulated and compared the reliability, latency and communication range between several broadcast suppression protocols (p-persistence, weighted p-persistence, slot1/p-persistence and BPAP). And we think the way to select the forwarding node is an important design issue. Therefore, this thesis proposes an integrated broadcast suppression technology, including the mechanism of backoff and through side-acknowledge method to ensure that the message can be transmitted smoothly without compromising the reliability of the system. The simulation results show that the reliability can be greatly improved without a significant increase in latency compared with other known methods.

    摘要 ii Abstract xvii 誌謝 xix 目錄 xx 表目錄 xxi 圖目錄 xxiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.3 其他議題介紹 6 1.4 論文章節架構 7 第二章 系統模型 8 2.1 移動模型 (Mobility model) 8 2.2 通道模型 (Channel model) 11 2.3 PHY/MAC-layer標準介紹 (IEEE 802.11p) 15 2.4 訊息介紹(SAE J2375, 3GPP TS22.886)/ KPIs介紹 19 2.5 廣播觸發條件 23 2.6 主要性能指標(KPIs) 25 第三章 廣播協定 27 3.1 Flooding 27 3.2 廣播抑制相關方法 28 3.2.1 p-Persistence 28 3.2.2 Weighted p-Persistence 29 3.2.3 Slotted 1-Persistence 32 3.2.4 Slotted p-Persistence 35 3.2.5 BPAP (Binary-Partition-Assisted protocol) 36 3.3 提出的方法 41 第四章 系統參數設定與模擬分析比較 44 第五章 結論 74 第六章 參考文獻 75

    [1] Sze-Yao Ni, “The Broadcast Storm Problem in a Mobile Ad Hoc Network”, Wireless Networks vol. 8, pp. 153–167, March 2002.
    [2] N. Wisitpongphan, “Broadcast storm mitigation techniques in vehicular ad hoc networks”, IEEE Wireless Communications, vol. 14, no. 6, pp. 84-94, Dec. 2007.
    [3] Z.J. Haas, “Gossip-Based Ad Hoc Routing”, IEEE/ACM Transactions on Networking, vol. 14, no.3, Jun 2006.
    [4] Jagruti Sahoo, “Binary-Partition-Assisted MAC-Layer Broadcast for Emergency Message Dissemination in VANETs”, IEEE Transactions on Intelligent Transportation Systems, vol.12, no.3, Sept. 2011.
    [5] Yuanguo Bi, “A Multi-Hop Broadcast Protocol for Emergency Message Dissemination in Urban Vehicular Ad Hoc Networks”, IEEE Transactions on Intelligent Transportation Systems, vol.17, no.3, Mar. 2016.
    [6] Nawaporn Wisitpongphan, “Routing in Sparse Vehicular Ad Hoc Wireless Networks”, IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1538 – 1556, Oct. 2007.
    [7] Lin Cheng, “Mobile Vehicle-to-Vehicle Narrow-Band Channel Measurement and Characterization of the 5.9 GHz Dedicated Short-Range Communication (DSRC) Frequency Band”, IEEE J. Sel. Areas Commun., vol. 25, no. 8, pp. 1501-1516, Oct. 2007.
    [8] SAE Std. J2735, “Dedicated Short Range Communications (DSRC) Message Set Dictionary”, SAE Int, DSRC Committee, Nov. 2009.
    [9] Zachary MacHardy, “V2X Access Technologies: Regulation, Research, and Remaining Challenges”, IEEE Communications Surveys & Tutorials, vol.20, no.3, Feb. 2018.
    [10] Fan Li and Yu Wang, “Routing in Vehicular Ad Hoc Networks: A Survey”, IEEE Vehicular Technology Magazine, vol. 2, no.2, June 2007.
    [11] John B. Kenney, “Dedicated Short-Range Communications (DSRC) Standards in the United States”, Proceedings of the IEEE, vol. 99, no.7, July 2011.
    [12] Gokhan Korkmaz, “Urban Multi-Hop Broadcast Protocol for Inter-Vehicle Communication Systems”, ACM VANET, no.4, October 2004.
    [13] Gokhan Korkmaz, “An Efficient Fully Ad-Hoc Multi-Hop Broadcast Protocol for Inter-Vehicular Communication Systems”, IEEE ICC Proceedings, June 2006.
    [14] Elena Fasolo, “An Effective Broadcast Scheme for Alert Message Propagation in Vehicular Ad hoc Networks”, IEEE ICC Proceedings, June 2006.
    [15] Pengfei Wang, “Cellular V2X Communications in Unlicensed Spectrum: Harmonious Coexistence with VANET in 5G Systems”, IEEE Transactions on Intelligent Transportation Systems, vol.17, no.8, AUG. 2018.
    [16] IEEE Std. 802.11p, “IEEE Standard for Information Technology--Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements; Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)Specifications; Amendment 6: Wireless Access in Vehicular Environments”, July 2010.
    [17] 3GPP TS 22.186, “Service requirements for V2X services”, Dec. 2016.
    [18] Krauß, Stefan, “Microscopic Modeling of Traffic Flow: Investigation of Collision Free Vehicle Dynamics”, SUMO document, 1998.
    [19] Abdeldime, “The Physical Layer of the IEEE 802.11p WAVE Communication Standard: The Specifications and Challenges”, WCECS, October, 2014.
    [20] Robert J. Mailloux, “Phased Array Antenna Handbook”, Artech Print on Demand Second Edition, chapter 1, 2005.
    [21] H. Nyquist, “Thermal agitation of electric charge in conductors”, Phys. Rev, VOL 32, July 1928.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE