| 研究生: |
呂曜宇 Lu, Yao-Yu |
|---|---|
| 論文名稱: |
地面光達點雲資料特性探討及分類應用 Characteristics and Classification of Ground-Based Lidar Data |
| 指導教授: |
王驥魁
Wang, Chi-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 反射強度值 、分類 、光達 |
| 外文關鍵詞: | Classification, Intensity, Lidar |
| 相關次數: | 點閱:91 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地面光達系統可大量且快速獲取掃瞄物體的三維坐標值及反射強度值(合稱光達點雲),三維坐標值可應用於建物模型重建、防災與災害調查、隧道施測、水壩變形監控、建築古蹟維護等,反射強度值則可應用於光達點雲分類。反射強度值與物體表面的反射率有關,理論上可依光達方程式(lidar equation),改正反射強度值受距離及角度之影響,應用於分類辨識。實際上光達系統受限於硬體架構,必須修改反射強度值以簡化感應器之設計與方便資料儲存,故造成實測資料不符於光達方程式之理論預測,使得光達點雲分類精度不高。
本文以Optech ILRIS-3D 雷射掃描儀之地面光達系統為例,分別探討ILRIS-3D 所量測之二種反射強度值之資料特性:原始反射強度值(數值分佈0~25500)與灰階反射強度值(數值分佈0~255)。本文以一系列的實驗探討電池電量、陰影與距離對於反射強度值之影響。並進一步提出『動態同心圓法』以灰階反射強度值辨識物體分類。
Ground-based lidar system can rapidly gather highly detailed spatial information and intensity data of the scanned target. They have been applied successfully for building model reconstruction, disaster investigation, tunnel and dam monitoring, and architecture maintenance. Because the intensity data is related to the surface type of the scanned object, they can be used for point cloud classification by using lidar equation to correct for distance and angle effect. However, in order to accommodate the hardware design for the ease of data storage, the intensity data are usually altered by lidar system. As a result, the lidar equation can not be readily applied on the lidar data, hence a high classification accuracy is difficult to achieve.
In this study, two types of intensity data of an Optech ILRIS-3D system are examined, raw intensity (values range 0 ~ 25500) and gray-level intensity (values range 0 ~ 255). Experiments are conducted to examine the influence of battery voltage, shade cast on the scanned target, and distance on the intensity data. Finally, a new method, dynamic concentric method, is proposed to perform the point cloud classification based on gray-level intensity data.
王正忠, 2002. 以近景攝影測量進行模型式建物重建. 國立成功大學測
量與空間資訊所碩士論文.
賴志凱, 2004. 地面雷射掃瞄儀的精度分析與檢定. 國立成功大學測量
與空間資訊所碩士論文.
Barbini, R., Colao, F., Fantoni, R., Micheli, C., Palucci, A. and
Ribezzo, S., 1998. Design and application of a lidar fluorosensor
system for remote monitoring of phytoplankton. ICES Journal of
Marine Science, 55: 793–802.
Boehler, W., Heinz, G. and Marbs, A., 2001. The Potential of
Non-contact Close Range Laser Scanners for Cultural Heritage
Recording, Proceedings of CIPA International Symposium, Potsdam,
Germany.
Firchau, S. and Wiechart, A., 2005. Accurate On-Time
Geo-Information for Disaster Management and Disaster Prevention
by Precise Airborne Lidar Scanning. Geo-information for Disaster
Management, pp.109-119.
Fujin, K. and Arikawa, T., 2002. Urban Object Reconstruction Using
Airborne Laser Elevation Image and Aerial Image. IEEE Transactions
On Geoscience and Remote Sensing, Vol.40, No.10.
90
Harris M., Vaughan J.M., Huenecke K. and Huenecke C., 2000.
Aircraft wake vortices: a comparison of wind-tunnel data with field
trial measurements by laser radar, Aerospace Science and Technology,
Volume 4, Number 5, July 2000, pp.363-370.
HASEGAWA, H., 2006. Evaluation of LIDAR reflectance amplitude
sensitivity towards land cover conditions. Bulletin of the
Geographical Survey Institute 53, pp.43-50.
Höfle, B. and Pfeifer, N., 2007. Correction of laser scanning
intensity data: Data and model-driven approaches. ISPRS Journal
of Photogrammetry and Remote Sensing 62 415-433.
Kaasalainen, S., Hyyppä, J., Litkey, P., Hyyppä, H., Ahokas, E.,
Kukko, A. and Kaartinen H., 2007. Radiometric Calibration of ALS
Intensity, IAPRS Volume XXXVI, Part3/W52.
Kukko, A., Kaasalainen, S. and Litkey, P., 2008. Effect of
incidence angle on laser scanner intensity and surface data,
APPLIED OPTICS, Vol.47, No.7, 986-992.
Measures, R.M., 1984. Laser Remote Sensing – Fundamentals and
Applications, John Wiley and Sons.
Oren, M. and Nayar, S.K., 1992. Generalization of the lambertian
model and implications for machine vision, Technical Report
CUCS-057-92, Department of Computer Science, Columbia University,
New York, NY, USA, 1992.
91
Oren, M. and Nayar, S.K., 1994. Seeing beyond Lambert's law.
Lecture Notes in Computer Science, pp.269-280.
Otterman, J. and Weiss, G.H., 1984. Reflection from a field of
randomly located vertical protrusions. Appl. Opt. 23, 1931-1936.
Ørka, H.O., Naesset, E. and Bollandsås, O.M., 2007. Utilizing
Airborne Laser Intensity for Tree Species Classification, ISPRS
Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo,
September 12-14, 2007, Finland.
Siegman, A.E., 2000. Laser Beams and Resonators : The 1960s. IEEE
JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.6, NO.6.
Song, J.H., Han, S.H., Yu, K. and Kim, Y., 2002. Assessing the
Possibility of Land-cover Classification Using Lidar Intensity
Data, IAPRS, 9-13 September, Graz, 34, 4.
Stafne, M.A., Mitchell, L.D. and West, R.L., 2000. Positional
Calibration of Galvanometric Scanner Used in Laser Doppler
Vibrometers, Measurement, Vol.28, pp.47-59.
Wehr, A. and Lohr, U., 1999. Airborne Laser Scanning - an
Introduction and Overview. ISPRS Journal of Photogrammetry &
Remote Sensing, Vol.54, pp.68-82.