| 研究生: |
林鴻昇 Lin, Hung-sheng |
|---|---|
| 論文名稱: |
以COMSOL有限元素軟體分析凝固問題 Analysis Of Solidification Problems By Using Finite Element Package COMSOL Multiphysics |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 相變化 、有限元素法 、等效比熱法 、熱焓法 、COMSOL Multiphtsics |
| 外文關鍵詞: | Phase Change, Finite Element Method, Enthalpy Method, COMSOL Multiphtsics, Effective Specific Heat Method |
| 相關次數: | 點閱:159 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在材料的製造過程當中,液體與固體的相變化是相當重要的物理現象,有效模擬出相變化情況以及增加準確度能夠幫助了解材料相變化過程的情形。本文使用多重物理量有限元素套裝軟體COMSOL Multiphysics進行相變化問題之模擬探討。相變化問題有正解解析解的一維史蒂芬問題、紐曼問題和二維Rathjen問題。本研究先針對這些問題,搭配不同處理潛熱效應的方法,進行凝固熱傳行為之模擬,最後將數值解與解析解進行準確度比較分析。然後再進一步對二維凝固問題,考慮自然對流效應,模擬矩形容器右側受到一個鑄模熱傳效應時,其內部溫度與流場分布及凝固情形。經由分析的結果可以得到求解史蒂芬問題相變化熱傳遞問題時,使用熱焓法可獲得較好的準確度。求解相變化問題時運用有限元素套裝軟體進行模擬可得到不錯的準確度,本文之研究可提供一個有效模擬相變化熱傳遞問題的方法,並且期望可作為進一步研究之參考。
In the manufacturing process of material, the liquid and solid phase change is an important physical phenomenon. An effective and accurate simulation is helpful to understand the phase-change process. In the thesis, the finite element package COMSOL Multiphysics is used to investigate the process simulation. The phase change problems with exact solutions are studied, which include the one-dimensional Stefan and Neumann problems and the two-dimensional Rathjen problem. The study utilizes two different methods of handling latent heat, enthalpy and effective specific heat methods, to simulate the solidification behavior of those problems. The numerical solutions are compared with the exact ones. Furthermore, in the research, a two-dimensional solidification problem with the natural convection effect is simulated, in which the computing domain is square and the right boundary is subjected to the heat extraction caused by the mold influence. From the analysis, the enthalpy method could have the better results than the effective specific scheme. It could obtain considerably accurate numerical solutions to use the finite element package to solve solidification problems. The results of the study offer an effective way to simulate the heat transfer problem of a solidification process and it is expected that the results can be an important reference for the further study using the package.
1. Crank,J.,“Free and Moving Boundary Problem,”Oxford Uni.Press,Oxford,1984.
2. Haiso,J.S.,“An Efficient Algorithm for Finite Difference Analysis of Heat Transfer with Melting and Solidification,” Numerical Heat Transfer, Vol. 8, pp. 653-666, 1985.
3. Date,A.W.,“A Strong Enthalpy Formulation for the Stefan Problem,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 2231-2283, 1991.
4. Unger,Lyle H.,and Brown,Robert A.,“Cellular interface morphologies in directional solidification Ⅳ.The formation of deep cells,”The American Physical Society, Vol. 31, pp. 5931-5939, 1985.
5. Nigro,N.,Huespe,A.,Fachinotti,V.,“Phasewise numerical integrational of finite element method applied to solidification processes”,International Journal of Heat and Mass Transfer, Vol. 43, pp. 1053-1066, 2000.
6. Felicelli,S.D.,Heinrich,J.C.,Poirier,D.R.,“Three-dimensional simulations of freckles in binary alloys”,Jounal of Crystal Growth, Vol. 191, pp. 879-888, 1998.
7. Takaki,Tomohiro.,Fukuoka,Toshimichi.,Tomita,Yoshihiro“Phase-field simulation during directional solidification of a binary alloy using adaptive finite element method”,Journal of Crystal Growth, Vol. 283, pp. 263-278, 2005.
8. 駱建宏,“金屬液體流動影響網狀晶微結構之數值探討,”國立成功大學工程科學研究所碩士論文,2006。
9. 莊富嵐,“微型散熱模組之冷卻效能分析與研究,”虎尾科技大學機械與機電工程研究所碩士論文,2007 。
10. 邱耀逵,“微處理器之散熱鰭片冷卻效能分析與研究,” 虎尾科技大學機械與機電工程研究所碩士論文,2008。
11. Carslaw,H.S. and Jaeger,J.C.,“Conduction of Heat in Solids,”2nd ed.,Clarendon Press,London,1959.
12. Rathjen. H. and Jiji, L. M.,“Heat conduction with melting or freezing in a corner,”J.Heat Transfer ASME,Vol.93,pp.101-109
13. 王新榮、陳時錦、劉亞忠,“有限元素法及其應用”,中央圖書出版社,1997。
14. D. Pepper, W. Heinrich, C, Juan, second ed., The Finite element method: Basic Concepts and Applications.
15. 馬慧、王剛,COMSOL MULTIPHYSICS基本操作指南和常見問題解答,人民交通出版社,2009。
16. COMSOL MULTIPHYSICS,Use’s Guide, Version 3.5 a.
17. COMSOL MULTIPHYSICS 多重物理量有限元素工程分析軟體使用手冊,皮托科技股份有限公司。
18. Murray W. D., Landis F., “Numerical and machine solutions of transient heat conduction problems involving freezing and melting,”Journal of Heat Transfer-Transactions of the ASME,Vol. 81, pp. 106-112, 1959.
19. Sikarskie, D. L. and Boley, B. A., “The solution of a class of two-dimensional melting and solidification problems,”Int. J. Solids Strectures, Vol. 1, pp. 207-234, 1965.
20. Budhia,H. and Kreith, F., “Heat transfer with melting or freezing in a wdge,” Int. J. Heat Mass Transfer, Vol. 16, pp. 195-211, 1973.
21. Ciment M.,Guenther R. B.,“Numerical solution of a free boundary value problem for parabolic equations,” Applicable Analysis, Vol. 4, pp. 39-42, 1974.
22. Holzolohner, U., “A finite element analysis for time-dependent problems,”Int. J. Numer. Meth. Engng, Vol. 8, pp. 55-69,1974.
23. Comini G. and Lewis R. W., “A numerical solution of two-dimensional problems involving heat and mass transfer,” International Journal of Heat and Mass Transfer, Vol. 19, pp. 1387-1392, 1976.
24. Lemmon E.C., Numerical methods in heat transfer, Wiley,New York,1981.
25. Rubinsky B.,Cravahlo E. G., “A finite element method for the solution of one-dimensional phase change problems,” International of Heat and Mass Transfer , Vol. 24, pp. 1987-1989, 1981.
26. Dalhuijsen A. J., Segal A., “Comparison of finite element techniques for solidification problems,” International Journal for Numerical Methods in Engineering, Vol. 23, pp. 1807-1829, 1986.
27. Poirier D., Salcudean M.,“On numerical methods used in mathematical modeling of phase change in liquid metels,” Journal of Heat Transfer-Transactions of the ASME, Vol. 110. pp. 562-570, 1988.
28. Dantzig, J. A.,“Modeling liquid – solid phase changes with melt convection,”International Journal for Numerical Methods in Engineering,Vol. 28, pp. 1769-1785, 1989.
29. Anderson, D. A., Tannehill, J. C. and Pletcher, R. H.,“Computational Fluid Mechanics and Heat Trans,”Hemisphere, 1990.
30. Usmani A. S., Lewis R. W., Seetharamu K.N., “Finite element modeling of natural-convection-controlled change of phase,” International Journal for Numerical Methods in Fluids, Vol. 14, pp. 1019-1036, 1992.
31. Ouyang T., Tamma K. K., “Finite element simulations involving simultaneous multiple interface fronts in phase change problem,”International Journal of Heat and Mass Transfer , Vol. 39, pp. 1711-1718, 1996.
32. Kurz W.,Fisher D.J.,Fundamentals of solidification,Trans Tech Publications,Switzerland,1998
33. Lewis R.W.,Ravindran K.,“Finite element simulation of metal casting,” International Journal for Numerical Methods in Engineering, Vol. 47, pp. 29-59, 2000.
34. 黃有慶,“凝固模式之分析比較,”國立成功大學工程科學研究所碩士論文,1998。
35. 郭晉凱,“混合拉式轉換法求解相變化熱傳問題,”國立成功大學工程科學研究所碩士論文,2009。
36. Swaminathan C. R., Voller V. R., “A general enthalpy method for modeling solidification processes,” Metallurgical Transactions, B. 23B, pp. 651-664, 1992.
37. Chen Y., Im Y. T., Yoo J., “Finite element analysis of solidification of aluminum with natural convection,” Journal of Materials Processing Technology, Vol. 52, pp. 592-609, 1995.
38. Nasch P. M., Steinemann S. G., “Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique,” Physics and Chemistry of Liquid, Vol. 29, pp. 43-58, 1995.
39. Lee J., Mok J., Hong C. P., “Straightforward numerical analysis of casting process in a rectangular mold:from filling to solidification,” ISIJ international, Vol. 39, pp. 1252-1261, 1999.
40. 林建中,“矩形容器內奈米流體之自然對流熱傳現象之研究,”國立成功大學機械工程研究所碩士論文,2004。
41. 彭勳章,“從澆注到凝固之鑄造過程的可變時間步伐數值分析,”國立成功大學工程科學研究所博士論文,2010。