簡易檢索 / 詳目顯示

研究生: 陳信旭
Chen, Hsin-hsu
論文名稱: 使用旋轉塗佈方式研製n+-p--p+結構之矽基板光調變器與太陽能電池
Using Spin-on Dopant Technique to Fabricate n+-p--p+ Silicon Optical Modulators and Solar Cells
指導教授: 莊文魁
Chuang, Wen-kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 109
中文關鍵詞: 太陽能電池光調變器
外文關鍵詞: Modulators, Solar Cells
相關次數: 點閱:191下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,利用SOD技術製作出一個工作波段在1.55微米的矽基板光調變器及太陽能電池。
    光調變器的調變機制為自由載子色散效應,並藉由電荷耦合器可以觀察到在不同的偏壓下,光訊號在通道中的變化,且在不同的調變長度與寬度下,調變深度均可以達到100%。
    太陽能電池的製作以一次擴散來完成n+-p--p+結構,並研究不同的製程來達到轉換效率的最佳化;另外,設計其光學薄膜來降低反射。最後,轉換效率可以達到9.85%,而fill factor、Jsc及Voc分別為59%、31.917mA/cm2、519.922mV。除此之外,透明導電膜AZO及矽薄膜成長也將會被討論分析及製作。

    In this thesis, the Si-based infrared optical modulators working at the wavelength of 1.55 m and solar cells have been fabricated by SOD technique. For optical modulators, their optical modulation mechanism is based on the free carrier dispersion effect, which is verified by the CCD images showing the guided light within the channel is being modified with respect to different bias voltages. Their modulation depths of modulators with varieties of modulation lengths and widths achieved are close to 100% when appropriate voltages are administered.
    As for the solar cells, the n+-p--p+ structure is formed by one drive-in step using the aforementioned SOD method. The optimized processes being implemented for the improvement of the solar cell’s conversion efficiency are investigated, which also include the use of the optical thin films deposited on the cells to reduce the reflection. Finally, the best conversion efficiency, open-circuit voltage (Voc), short-circuit current (Isc) and fill factor of these solar cells achieved are 9.85%, 519.922mV, 31.917mA/cm2, and 59%, respectively.

    中文摘要 ………………………………………………………… I 英文摘要 ………………………………………………………… II 致謝 ……………………………………………………………… IV 目錄 ……………………………………………………………… V 表目錄 …………………………………………………………… IX 圖片目錄 ………………………………………………………… X 第一章 導論 ……………………………………………… 1 1-1 SOD (Spin-on Dopant)技術 ……………………… 1 1-2 光調變器簡介 ……………………………………… 2 1-3 太陽能電池簡介 …………………………………… 4 1-4 透明導電薄膜簡介 ………………………………… 7 1-5 論文架構 …………………………………………… 8 第二章 理論背景 …………………………………………… 9 2-1 Interband absorption ……………………………… 9 2-2 光調變器理論背景 …………………………………… 10 2-2-1 自由載子注入效應 …………………………………… 10 2-2-2 操作模態 ……………………………………………… 11 2-3 太陽能電池理論背景 ………………………………… 12 2-3-1 太陽能光譜 …………………………………………… 12 2-3-2 太陽能電池原理 ……………………………………… 13 2-3-3 太陽能電池等效電路 ………………………………… 16 2-3-4 太陽能電池轉換效率與填充因子 …………………… 17 2-3-5 表面粗糙化及抗反射層 ……………………………… 18 第三章 n+-p--p+結構之光調變器 ………………………… 19 3-1 元件結構 ……………………………………………… 19 3-2 元件製作流程 ………………………………………… 20 3-3 抛光研磨 ……………………………………………… 21 3-4 元件量測結果 ………………………………………… 22 3-4-1 CCD image …………………………………………… 22 3-4-2 調變深度 ……………………………………………… 24 3-4-3 調變速度 ……………………………………………… 29 3-4-4 頻率效應 ……………………………………………… 31 3-4-5 載子生命週期 ………………………………………… 32 3-4-6 n+-p--p+ vs. p+-n--n+ …………………………… 35 第四章 氧化鋅摻雜鋁之透明導電薄膜 ……………………… 36 4-1 AZO靶材製作 …………………………………………… 36 4-2 AZO量測分析項目 ……………………………………… 38 4-3 AZO成長與量測結果 …………………………………… 39 4-3-1 成長條件 ……………………………………………… 39 4-3-2 電性分析 ……………………………………………… 39 4-3-3 光學分析 ……………………………………………… 40 4-3-4 材料分析 ……………………………………………… 40 第五章 以CVD方式成長矽薄膜 ……………………………… 43 5-1 矽薄膜成長條件與電性量測 ………………………… 43 5-2 X-Ray繞射分析 ……………………………………… 46 5-3 膜厚量測 ……………………………………………… 47 第六章 以離子佈植方式定義矽p-n層 ……………………… 49 6-1 離子佈植模擬 ………………………………………… 49 6-2 實驗流程 ……………………………………………… 49 6-3 去氫流程 ……………………………………………… 50 6-4 XRD繞射分析 ………………………………………… 52 6-5 電性量測 ……………………………………………… 53 6-5-1 電阻率量測 …………………………………………… 53 6-5-2 展阻量測 ……………………………………………… 55 第七章 n+-p--p+結構之太陽能電池 ………………………… 58 7-1 元件製作流程 ………………………………………… 58 7-2 量測結果與討論 ……………………………………… 59 7-2-1 前言 …………………………………………………… 59 7-2-2 元件厚度影響分析 …………………………………… 60 7-2-3 邊緣隔離 ……………………………………………… 60 7-2-4 電極間距與元件厚度最佳化 ………………………… 62 7-2-5 電極遮蔽面積 ………………………………………… 65 7-2-6 SOD製程溫度 ………………………………………… 67 7-2-7 n+-p- vs. n+-p--p+太陽能電池結構之比較 ……… 73 7-2-8 展阻量測 ……………………………………………… 77 7-2-9 busbar設計 …………………………………………… 82 7-2-10 光學薄膜設計 ………………………………………… 84 7-2-11 隨機金字塔 …………………………………………… 96 第八章 結論與未來工作 …………………………………… 104 8-1 結論 …………………………………………………… 104 8-2 未來工作 ……………………………………………… 106 參考文獻 …………………………………………………………… 107

    [1] N. N. Toan, Spin-on glass materials and applications in advanced IC technologies, University Twente, 1999.

    [2] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687–1706, 1993.

    [3] Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973.

    [4] Sciuto, S. Libertino, S. Coffa, and G. Coppola, “A miniaturizable Si-based electro-optical modulator working at 1.5μm,” Appl. Phys. Lett., vol.86, pp.201115-201115-3, 2005.

    [5] 楊昌中, 能源領域中的奈米科技研究, 工業研究院 能源與環境 研究所, 中華民國95年12月26日。

    [6]http://inventors.about.com/od/timelines/a/Photovoltaics.htm

    [7] A. C. Pan, C. del Canizo and A. Luque, “Effect of thickness on bifacial silicon solar cells,” IEEE Electron Devices, Spanish Conference on, pp.234-237, Jan. 31 2007 - Feb. 2 2007.

    [8] Guy Beaucarne, Advances in OptoElectronics, volume 2007, Article
    ID 36970.

    [9] W. Fuhs , S. Gall, B. Rau, M. Schmidt, J. Schneider, “A novel route to a polycrystalline silicon thin-film solar cell,” Solar Energy, vol.77, pp.961-968, 2004.

    [10] O. Kluth, B. Rech, L. Houbena, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl and H.W. Schock,“Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films, vol.351, pp.247-253, 1999.

    [11] M.A. Martinez, J. Herrero and M.T. Gutierrez, “Deposition of transparent and conductive Al-doped ZnO thin film for photovoltaic solar cells,” Sol. Energy Mater. Sol. Cells, vol.45, pp.75-86, 1997.
    [12] H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore and D.B. Chrisey, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films, vol.377-378, pp.798-802, 2000.
    [13] Z.A. Ansari, R.N. Karekar and R.C. Aiyer, “Humidity sensor using planar optical waveguides with claddings of various oxide materials,” Thin Solid Films, vol.305, pp.330-335, 1997.

    [14] T. Minami, H. Sato, H. Imamoto and S. Takata, “Substrate temperature dependence of transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering,” Jan. J. Appl. Phys., vol.31, pp. L257-L260, 1992.

    [15] A. E. Rakhshani, Y.Makdisi, H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films,” Journal of Applied Physics, vol.83, pp.1049-1057, 1998.

    [16] T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics, London, England: Butterworth & Co., 1973.

    [17] R. A. Soref, R. R. Bennett, “Electrooptical effects in Silicon,” IEEE Journal of Quanum Electronics, vol. 23, no. 1, pp. 123-129, 1987.

    [18] Antonella Sciuto, Sebania Libertino, Salvo Coffa, and Giuseppe Coppola, “ Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator, ” J. Lightwave Technol., vol. 21, no. 1, pp. 228-235, 2003.

    [19] S. O. Kasap, Optoelectronics and photonics: principles and practices, Pearson Education, 2001, pp. 254-255.

    [20] S. O. Kasap, Optoelectronics and photonics: principles and practices, Pearson Education, 2001, pp. 257-258.
    [21] 文/蔡進譯,「超高效率太陽能電池-從愛因斯坦的光電效應談起」,物理雙月刊 (二十七卷五期) ; 2005年10月,pp. 701-719。

    [22] 莊嘉琛,「太陽能工程–太陽能電池篇」,全華科技圖書股份有限公司;92年3月。

    [23] http://pvcdrom.pveducation.org/

    [24] 李正中,「薄膜光學與鍍膜技術」,藝軒圖書出版社;1999年12月第一版,pp. 42-43。

    [25] A. Sciuto, S. Libertino, S. Coffa, “Design, fabrication and testing of an integrated Si-based light modulator,” Proc. SPIE vol. 4947, pp. 74-83, 2003.

    [26] H. L. Hartnagel, A. K. Jagadish, “Semiconducting Transparent Thin Films,” published by Institute of Physics Publishing, 1995.

    [27] J. D. Ye, S. Gu, S. Zhu, T. Chen, W. Liu, F. Qin, L. Hu, R. Zhang, Y. Shi, and Y. Zheng, “Raman and photoluminescence of ZnO films deposited on Si (111) using low-pressure metalorganic chemical vapor deposition,” J. Vac. Sci. Technol., vol.21, pp.979-982, 2003.

    [28] Eugene Hecht. , Optics, Addison Wesley, c2002, 4th ed., pp. 426-430.

    [29] Ricky W. Chuang, Zhen-Liang Liao, Chih-Kai Chang, “Integrated Optical Beam Splitters Employing Symmetric Mode Mixing in SiO2/SiON/SiO2 Multimode Interference Waveguides,” Japanese Journal of Applied Physics Vol. 46, No. 4B, pp. 2440–2444, 2007.

    下載圖示 校內:2011-08-04公開
    校外:2012-08-04公開
    QR CODE