簡易檢索 / 詳目顯示

研究生: 曾劭瑜
Tseng, Shao-Yu
論文名稱: 應用DQEM分析具Pasternak彈性基座的樑結構問題
Solution of beam on Pasternak elastic foundation by DQEM
指導教授: 陳長鈕
Chen, Chang-New
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 85
中文關鍵詞: 數值積分表示微分元素法彈性基座
外文關鍵詞: DQEM, Pasternak
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有限元素法及有限差分法為兩種既有的數值結構分析技巧。有限元素法因為能夠被有系統地編成電腦程式,已經被廣泛應用於一般的結構分析;數值積分表示微分元素法為陳長鈕老師所研究開發出來的一種結構分析的數值方法,除了能有系統地編寫成電腦程式外,也可以更有效地求得精確的解。
    數值積分表示微分元素法將欲分析的結構物分割成有限個元素,然後利用數值積分表示微分的技巧,對定義於各個元素的微分或偏微分關係式做數值的離散化,然後由考慮在整體結構物的離散點滿足所應具有的力學微分關係式的條件下,可得到結構物的離散方程式系統。
    Pasternak彈性基座是由 Pasternak, P.L【1】在 1954 年所提出,國際間之相關學術論文均建立在有限元素法(FEM)之分析模式上,本文應用陳長鈕老師獨創之數值積分表示微分元素法(DQEM)來求解不同的邊界條件下具Pasternak彈性基座樑的靜變形問題以及振動問題。數值計算的結果證明此方法的有效性。

    A new numerical approach for solving the problem of a beam resting on a Pasternak-type foundation is proposed. The approach uses the differential quadrature (DQ) to discretize the governing differential equations defined on all elements, the transition conditions defined on the interelement boundaries of two adjacent elements, and the boundary conditions of the beam. By assembling all the discrete relation equations, a global linear algebraic system can be obtained. Numerical results of the solutions of beams resting on a Pasternak-type foundations obtained by the DQEM are presented.
    The differential quadrature element method (DQEM) proposed by Dr.C.N. Chen is a numerical analysis method for analyzing continuum mechanics problems. The numerical procedure of this method can systematically implemented into a computer program. The coupling of solutions at discrete points is strong. In addition, all fundamental relations are considered in constructing the overall discrete algebraic system. Consequently, convergence can be assured by using less discrete points, and accurate results can be obtained by using less arithmetic operations which can reduce the computer CPU time required.

    摘要 .............................. I 摘要(英)........................... II 誌謝............................... III 目錄............................... IV 表目錄............................. V 圖目錄............................. VI 符號表............................. IX 第一章 緒論........................ 1 第二章 數值積分表示微分法及微分元素法簡述 .. 2 2-1 DQM 介紹 ....................... 2 2-2 DQM 的數學模型 .................. 2 2-3 權重係數之計算法 ............... 3 2-4 以Lagrange 求解.................. 4 2-5 DQEM 簡述........................ 7 第三章 DQEM 具Pasternk彈性基座樑變形問題模式 8 3-1 理論推導 ........................ 8 3-2 問題一(邊界條件為簡單支承)..... 14 3-3 問題二(邊界條件為固定-固定)... 24 3-4 問題三(邊界條件為固定-自由)... 34 3-5 問題四(包含集中力)............. 44 3-6 問題五(兩段不等斷面)........... 49 第四章 DQEM 具Pasternk彈性基座樑振動問題模式 53 4-1 理論推導 ......................... 53 4-2 問題一(邊界條件為簡單支承)...... 58 4-3 問題二(邊界條件為固定-固定).... 63 4-4 問題三(包含集中質量)............ 68 4-5 問題四(兩段不等斷面)............ 73 第五章 結論 ................................. 75 參考文獻 ...................................... 76 附錄一 五個離散點之權重係數 ................... A 附錄二 六個離散點之權重係數 ................... B 附錄三 七個離散點之權重係數 ................... C 附錄四 八個離散點之權重係數 ................... D 附錄五 九個離散點之權重係數 ................... E 附錄六 十個離散點之權重係數 ................... F 附錄七 十一個離散點之權重係數 ................. G

    【1】Pasternak, P.L., " On a new method of analysis of an elastic foundation by means of two foundations constants " (in Russian) , Gasudarstvennoe Izdatelstvo Literaturi po Stroitelstvui Arkhitekure , Moscow, USSR (1954)
    【2】Zhaohua, F., and Cook, R. D. "Beam element on two-parameter elastic foundations" , J. Engrg. Mech. Div. , ASCE , 109 , 1390-1402(1983)
    【3】R. E. Bellman and J. Casti "Differential Quadrature and Long-term Itegration" , J. Math. Anal. , 34 , 235-238(1971)
    【4】F. Civan and C. M. Sliepcevich "Differential Quadratrual for Multi-dimentional Problems" , J. Math. Anal. Appl. , 101 , 423-443(1984)
    【5】Eisenberger, M. and Yankelevsky, D.Z. "Exact stiffness matrix for beams on elastic foundation" , Computers and Structures, 21 , 1355-1359(1985)
    【6】Eisenberger, M. and Clastornik, J. " Beams on variable two-parameter elastic foundation ", J. Engng. Mech. , ASCE , 113 , 1454-1466(1987)
    【7】Chiwanga, M. and Valsangkar, A. J. " Generalised beam element on two-parameter elastic foundation ", J. Str. Div., ASCE , 14 , 1414-1427(1988)
    【8】S. K. Jang , C. W. Bert and A. G. Striz "Application of Differential Quadrature to Static Analysis of Structural Components", Int. J. Numer. Methods eng. , 28 , 561-577(1989)
    【9】林育男 "數值積分表示微分元素法的研究", 國立成功大學造船及船舶機械工程研究所碩士論文(1995)
    【10】謝明錡 "數值積分表示微分元素法具彈性基座樑分析模式", 國立成功大學造船及船舶機械工程研究所碩士論文(1996)
    【11】何彥輝 "應用 DQEM 分析具與不具彈性基座之變斷面樑的問題", 國立成功大學造船及船舶機械工程研究所碩士論文(2000)
    【12】Singiresu S. Rao "Mechanical Vibrations", Addison Wesley , Second Edition(1990)
    【13】Eisenberger, M. and Bielak, J. " Finite beams on infinite two-parameter elastic foundations ", Computers and Structures , v42 , n4 , 661-664 (1992)
    【14】Chang Shu And Bryan E. Richard "Application of Generalized Differential Quadrature to solve Two-Dimensional Incomoressible Navier-Stokes Equations" , International Journal For Numerical Method in Fluid, Vol. 15, 791-798 (1992)
    【15】Franciosi, C. and Masi, A " Free vibrations of foundation beams on two-parameter elastic soil ", Computers and Structures , v47 , n3 , 419-426 (1993)
    【16】De Rosa, M. A. " Stability and dynamic analysis of two-parameter elastic foundation beams ", Computers and Structures , v49 , n2 , 341-349 (1993)
    【17】C. N. Chen " A Differentail Quadrature Element Method ", Proc. 1st Intl. Conf. Engr. Computation and Computer Simulation , Changsha , China , 25-35 (1995)
    【18】C. N. Chen " Solution of beam on elastic foundation by DQEM ", J. Engrg. Mech., v124 , n12 , 1381-1384 (1998)
    【19】Gulkan, P. and Alemdar, B. N. " Exact finite element for a beam on a two-parameter elastic foundation " , Structural Engineering and Mechanics , v7 , n3 , 259-276(1999)
    【20】C. N. Chen " Generalization of Differential Quadrature Discretization", Numerical Algorithms, Vol.22, 167-182 (1999)

    下載圖示 校內:2005-07-08公開
    校外:2005-07-08公開
    QR CODE