| 研究生: |
池書旋 Chih, Shu-Hsuan |
|---|---|
| 論文名稱: |
碲摻雜硒化鋅奈米錐之成長與其光電特性研究 Growth and Optoelectronic Properties of Te-doped ZnSe Nanotips |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 碲硒化鋅 、閃鋅與鎢采 、雙晶 、光檢測器 |
| 外文關鍵詞: | ZnSeTe, zinc-blende and hexagonal wurtzite, twin, photodetector |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討以分子束磊晶系統成長硒化鋅系列一維奈米結構,包含三元碲硒化鋅奈米錐、雙晶結構碲硒化鋅奈米錐、硒化鋅/碲硒化鋅超晶格奈米錐、以及三維硒化鋅/碲硒化鋅異質分支奈米錐結構。此外也以碲硒化鋅奈米錐製備金屬-半導體-金屬光檢測器。
我們透過分子束磊晶系統以氣-液-固成長法使用金當觸媒於矽基板上成長碲硒化鋅(ZnSe0.95Te0.05)奈米錐。奈米錐的平均長度為0.9微米。所成長的碲硒化鋅奈米錐為閃鋅與鎢采的混合結構。在5%的碲元素摻雜之下,我們發現20K下的光致螢光光譜峰值紅移了27奈米。此外,我們以同樣方法成長了不同碲摻雜比例的碲硒化鋅奈米錐(ZnSe0.9Te0.1)。此奈米錐擁有雙晶與閃鋅/鎢采混合結構。在光檢測器製作方面,我們於碲硒化鋅奈米錐上透過指叉狀金屬遮罩以電子束蒸鍍法鍍上一層厚金膜以作為電極。在5V的外加偏壓下,其所量測到的光-暗電流比可達700。
我們也製作了有更大複雜度的一維奈米結構。我們成功地成長出擁有不同井寬的硒化鋅/碲硒化鋅超晶格奈米錐。它們同樣是閃鋅與鎢采的混合結構。所觀察到的光致螢光光譜其強度遠大於同質的碲硒化鋅奈米錐。此外,井寬為16、20、24奈米的硒化鋅/碲硒化鋅奈米錐,其活化能分別為76、46、19毫電子伏特。基於以上的架構,我們更進一步成長三維硒化鋅/碲硒化鋅異質分支奈米錐,其主幹與分支分別為軸向硒化鋅/碲硒化鋅異質奈米錐與純硒化鋅結構。由光致螢光光譜發現其在低溫下擁有約490奈米藍綠光波段的放射,且其較小的光致螢光強度可能是由於分支部分以及主幹與分支界面的缺陷所造成。
This thesis focuses mainly on the growth of one-dimensional (1D) ZnSe-based nanostructures by molecular-beam epitaxy (MBE), including ternary ZnSe0.95Te0.05 nanotips, twinned ZnSe0.9Te0.1 nanotips, ZnSe/ZnSeTe superlattice nanotips, and three-dimensional (3D) branched ZnSe/ZnSeTe heterostructure nanotips. Furthermore, the fabrication of ZnSeTe nanotip-based Metal-Semiconductor-Metal (MSM) photodetector was demonstrated.
ZnSe0.95Te0.05 nanotips were grown on Si(100) substrates by MBE system in the vapor-liquid-solid (VLS) growth process with an Au-based nanocatalyst. Average length of ZnSe0.95Te0.05 nanotips was 0.9 μm. The as-grown ZnSe0.95Te0.05 nanotips exhibited mixture of cubic zinc-blende and hexagonal wurtzite structures. With 5% Te incorporation, it was found that 20K photoluminescence (PL) peak red-shifted by 27 nm. Furthermore, ZnSe0.9Te0.1 nanotips were also grown by the same method. It was found that the as-grown ZnSe0.9Te0.1 nanotips were twinned with alternative multi-domains and mixture of cubic zinc-blend/hexagonal wurtzite phases. For the fabrication of ZnSe0.9Te0.1 nanotip photodetector, a thick Au film was deposited through an interdigitated shadow mask onto the ZnSe0.9Te0.1 nanotips by electron beam evaporation to serve as the contact electrodes. The measured photocurrent to dark current contrast ratio was larger than 700 with 5 V applied bias.
1D nanostructures with great complexity were also achieved. ZnSe/ZnSeTe superlattice nanotips with various well widths (Lw) were grown successfully. It was found that the ZnSe/ZnSeTe superlattice nanotips also exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. The observed PL intensities were much larger than that observed from the homogeneous ZnSeTe nanotips. Furthermore, the activation energies for the ZnSe/ZnSeTe nanotips with well widths of 16, 20 and 24 nm were 76, 46 and 19 meV, respectively. Based on the above-mentioned architecture, 3D branched ZnSe/ZnSeTe heterostructure nanotips were grown accordingly, in which the backbones and branches were composed of axial ZnSe/ZnSeTe heterostructures and ZnSe, respectively. PL spectra of the branched ZnSe/ZnSeTe nanotips present a visible blue-green emission at around 2.53 eV (490 nm) at low temperature, and the observed smaller PL intensity could be attributed to the formation of defects existing in the branches and/or the interfaces between backbone and branches.
Chapter 1
[1] Duan X F, Huang Y, Agarwal R and Lieber C M 2003 Nature 421 241
[2] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[3] Wang J F, Gudiksen M S, Duan X F, Cui Y and Lieber C M 2001 Science 293 1455
[4] Cui Y,Wei Q Q, Park H K and Lieber C M 2001 Science 293 1289
[5] Duan X F, Huang Y, Cui Y, Wang J F and Lieber C M 2001 Nature 409 66
[6] Law M, Greene L, Johnson J C, Saykally R and Yang P D 2005 Nat. Mater. 4 455
[7] Singh A K, Kumar V, Note R and Kawazoe Y 2005 Nano Lett. 5 2320
[8] Mingo N 2004 Appl. Phys. Lett. 84 2652
[9] Hsu C L, Chang S J, Hung H C, Lin Y R, Huang C J, Tseng Y K and Chen I C 2005 IEEE Tran. Nanotechnol. 4 649
[10] Fan Z and Lua J G 2005 Appl. Phys. Lett. 86 123510
[11] Lu C Y, Chang S J, Chang S P, Lee C T, Kuo C F, Chang H M, Chiou Y Z, Hsu C L and Chen I C 2006 Appl. Phys. Lett. 89 153101
[12] Panda A B, Acharya S, Efrima S and Golan Y 2007 Langmuir 23 765
[13] Ohno Y, Shirahama T, Takeda S, Ishizumi A and Kanemitsu Y 2005 Appl. Phys. Lett. 87 043105
[14] Colli A, Hofmann S, Ferrari A C, Ducati C, Martelli F, Rubini S, Cabrini S, Franciosi A and Robertson J 2005 Appl. Phys. Lett. 86 153103
[15] Chan T F, Duan X F, Chan S K, Sou I K, Zhang X X and Wang N 2005 Appl. Phys. Lett. 83 2665
[16] Zhang T W, Shen Y Q, Hu W, Sun J, Wu J, Ying Z F and Xu N 2007 J. Vacuum Sci. Technol. 25 1823
[17] Zhang X T, Liu Z, Leung Y P, Li Q and Hark S K 2003 Appl. Phys. Lett. 83 5533
[18] Xiang B, Zhang H Z, Li G H, Yang F H, Su F H, Wang R M, Xu J, Lu G W, Sun X C, Zhao Q and Yu D P 2003 Appl. Phys. Lett. 82 3330
[19] Colli A, Hofmann S, Ferrari C, Ducati F, Martelli F, Rubini S, Cabrini S, Franciosi A and Robertson J 2005 Appl. Phys. Lett. 86 153103
[20] Ishikura H, Fukuda N, Itoi M, Yasumoto K, Abe T, Kasada H and Ando K 2000 J. Crystal Growth 214 1130
[21] Yang C S, Kuo M C, Lai Y J, Chiu K C, Shen J L, Lee J, Chou W C, Jeng S Y and Lan W H 2003 Mater. Chem. Phys. 81 1
[22] Lee C D, Park H L, Chung C H and Chang S K 1992 Phys. Rev. B 45 4491
[23] Bhattacharyya S, Perelshtein I, Moshe O, Rich D H and Gedanken A 2008 Adv. Functional Mater. 18 1641
[24] Zhang X T, Liu Z, Lee Q and Hark S K 2005 J. Phys. Chem. B 109 17913
[25] Choi Y J, Kwon S J, Choi K J, Kim D W, Park Ja G and Nahm S 2009 J. Korean Phys. Soc. 54 1650
[26] Wu Y and Yang P 2001 J. Am. Chem. Soc. 123 3165
[27] Basu J, Divakar R, Nowak J, Hofmann S, Colli A, Franciosi A and Carter C B 2008 J. Appl. Phys. 104 064302
[28] Wei C J, Klein H J and Beneking H 1981 Electron. Lett. 17 688
[29] Marso M, Horstmann M, Hardtdegen M, Kordos P and Luth H 1997 Solid-State Electron. 41 25
[30] Bhattacharya P 1997 Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey
[31] Li Y, Meng G W, Zhang L D and Phillipp F 2000 Appl. Phys. Lett. 76 2011
Chapter 2
[1] Parker E H 1985 The Technology and Physics of Molercular Beam Epitaxy 15
[2] Swaminathan V and Macrander A T 1991 Prentice-Hall, New Jersey 138
[3] Sidney Perkowitz 1993 ACADEMIC PRESS New York 50
[4] Ruterana P, Albrecht M and Neugebauer J 2003 Nitride Semiconductors : handbook on materials and devices, Wiley-VCH
[5] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
[6] Cheong M G, Kim K S, Oh C S, Namgung N W, Yang G M, Hong C H, Lim K Y, Lim D H and Yoshikawa A 2000 Appl. Phys. Lett. 77 2557
[7] Fu Y, Moon Y T, Yun F, Ozgur U, Xie J Q, Dogan S, Morkoc H, Inoki C K, Kuan T S, Zhou L and Smith D J 2005 Appl. Phys. Lett. 86 043108
[8] Chalmers J M and Dent G 1997 The Royal Socienty of Chemistry, Cambridge
[9] Turrel G and Dhamelincourt P 1996 John Wiley & Sons, Chichester
Chapter 3
[1] Shim K, Bae J W, Lim J S, Lee K W, Kim Y and Rabitz H 2003 phys. stat. sol. (b) 240 148
[2] Brasil M J S P, Nahory R E, Turco-Sandroff F S, Gilchrist H L and
Martin R J 1991 Appl. Phys. Lett. 58 2509
[3] Yin L W and Lee S T 2009 Nano Lett. 9 957
[4] Gudiksen M S, Lauhon L J, Wang J, Smith D C and Lieber C M 2002 Nature 415 617
[5] Qian F, Li Y, Gradecak S, Wang D L, Barrelet C J and Lieber C M 2004 Nano Lett. 4 1975
[6] Jie J S, Wang G Z, Han X H, Fang J P, Yu Q X, Liao Y, Xu B, Wang Q T and Hou J G 2004 J. Phys. Chem. B 108 8249
[7] Chen H Y, Wang J X, Yu H C, Yang H X, Xie S S and Li J Q 2005 J. Phys. Chem. B 109 2573
[8] Chang K W and Wu J J 2006 J. Phys. Chem. B 109 13572
[9] Zhang Z T, Rondinone A J, Ma J X, Shen J and Dai S 2005 AdV. Mater. 17 1415
[10] Hsu Y J, Lu S Y and Lin Y F 2005 AdV. Funct. Mater. 15 1350
[11] Chang S J, Su Y K, Chen W R, Chen J F, Lan W H, Lin W J, Cherng Y T, Liu C H and Liaw U H 2002 IEEE Photon. Technol. Lett. 14 188
[12] Hiei F, Ikeda M, Ozawa M, Miyajima T, Ishibashi A and Akimoto K 1993 Electron. Lett. 29 878
[13] Yang C S, Hong D Y, Lin C Y, Chou W C, Ro C S, Uen W Y, Lan W H and Tu S L 1998 J. Appl. Phys. 83 2555
[14] Kishino M, Tanaka S, Senda K, Yamada Y and Taguchi T 2000 J. Crystal Growth 214/215 220
[15] Chang S K, Lee C D, Park H L and Chung C H 1992 J. Crystal Growth 117 793
[16] Yao T, Kato M, Davies J J and Tanino H 1988 J. Crystal Growth 86 552
[17] Permogorov S, Reznitsky A, Naumov A, Stolz H and von der Osyten W 1989 J. Phys. (Condens. Matter) 1 5125
[18] Hsiao C H, Chang S J, Wang S B, Chang S P, Li T C, Lin W J, Ko C H, Kuan T M and Huang B R 2009 J. Electrochem. Soc. 156 J73
[19] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
[20] Mitzi D B 2005 Inorg. Chem. 44 7078
[21] Swanson H F, Fuyat R K and Ugrinic G M 1954 Natl. Bur. Stand. (U.S.), Circ. 539 3 23
[22] Guo Y, Geng B, Zhang L, Zhan F and You J 2008 J. Phys. Chem. C 112 20307
[23] Xue M Z and Fu Z W 2006 Electrochim. Acta 52 988
[24] Murali K R and Rajkumar P R 2006 J. Mater. Sci. - Mater. Electron. 17.5 393
[25] Yang C S, Chou W C, Chen D M, Lo C S, Shen J L and Yang T R 1999 Phys. Rev. B 59 8128
[26] Larach S, Shrader R E and Stocker C F 1957 Phys. Rev. 108 587
Chapter 4
[1] Ghoshal T, Biswas S and Kar S 2008 J. Phys. Chem. C 112 20138
[2] Davidson F M, Lee D C, Fanfair D D and Korgel B A 2007 J. Phys. Chem. C 111 2929
[3] Davidson F M, Schricker A D, Wiacek R and Korgel B A 2004 AdV.
Mater. 16 646
[4] Hao Y, Meng G, Wang Z L, Ye C and Zhang L 2006 Nano Lett. 6 1650
[5] Carim A H, Lew K K and Redwing J M 2001 AdV. Mater. 13 1489
[6] Tian M, Wang J, Kurtz J, Mallouk T E and Chan M H W 2003 Nano Lett. 3 919
[7] Sansoz F, Huang H and Warner D H 2008 JOM 60 79
[8] Xu L, Su Y, Chen Y Q, Xiao H H, Zhu L A, Zhou Q T and Li S 2006 J. Phys. Chem. B 110 6637
[9] Wang Y Q, Smirani R and Ross G G 2005 Appl. Phys. Lett. 86 221920
[10] Youngdahl C J, Weertman J R, Hugo R C and Kung H H 2001 Scr. Mater. 44 1475
[11] Hattori R, Fujii K, Ohyama T and Isshiki M 2006 Physica E 32 237
[12] Zhang Z H, Wang F F and Duan X F 2007 J. Cryst. Growth 303 612
[13] Li Q, Gong X, Wang C, Wang J, Ip K and Hark S 2004 AdV. Mater. 16 1436
[14] Swanson H E, Fuyat R K and Ugrinic G M 1954 Natl. Bur. Stand. (U.S.), Circ. 539 3 23
[15] Guo Y, Geng B, Zhang L, Zhan F and You J 2008 J. Phys. Chem. C 112 20307
[16] Shechtman D, Feldman A, Vaudin M D and Hutchison J L 1993 Appl. Phys. Lett. 62 487
[17] Wang Y Q, Philipose U, Xu T, Ruda H E and Kavanagh K L 2007 Semicond. Sci. Technol. 22 175
[18] Shim H W, Zhang Y and Huang H 2008 J. Appl. Phys. 104 063511
[19] Johansson J, Karlsson L S, Svensson C P T, Martensson T, Wacaster B A, Deppert K, Samuelson L and Seifert W 2006 Nature Mater. 5 574
[20] Hao Y, Meng G, Wang Z L, Ye C and Zhang L 2006 Nano Lett. 6 1650
[21] Li Q, Gong X G, Wang C, Wang J, Ip K and Hark S 2004 Adv. Mater. 16 1436
[22] Hiei F, Ikeda M, Ozawa M, Miyajima T, Ishibashi A and Akimoto K 1993 Electron. Lett. 29 878
[23] Yang C S, Kuo M C, Lai Y J, Chiu K C, Shen J L, Lee J, Chou W C, Jeng S Y and Lan W H 2003 Mater. Chem. Phys. 81 1
Chapter 5
[1] Lauhon L J, Gudiksen M S, Wang C L and Lieber C M 2002 Nature 420 57
[2] Kim H M, Kang T W and Chung K S 2003 Adv. Mater. 15 567
[3] Bjork M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R and Samuelson L 2002 Nano. Lett. 2 87
[4] Wu Y Y, Fan R and Yang P D 2002 Nano Lett. 2 83
[5] Park W I, Yi G C, Kim M and Pennycook S J 2003 Adv. Mater. 15 526
[6] Yan J, Fang X, Zhang L, Bando Y, Gautam U K, Dierre B, Sekiguchi T and Golberg D 2008 Nano Lett. 8 2794
[7] Hofmann S, Ducati C, Neill R J, Piscanec S, Ferrari A C, Geng J, Dunin-Borkowski R E and Robertson J 2003 J. Appl. Phys. 94 6005
[8] Tchernycheva M, Cirlin G E, Patriarche, Travers L, Zwiller V, Perinetti U and Harmand J C 2007 Nano. Lett. 7 1500
[9] Colli A, Hofmann S, Ferrari C, Ducati F, Martelli F, Rubini S, Cabrini S, Franciosi A and Robertson J 2005 Appl. Phys. Lett. 86 153103
[10] Dheeraj D L, Patriarche G, Largeau L, Zhou H L, van Helvoort A T J, Glas F, Harmand J C, Fimland B O and Weman H 2008 Nanotechnol. 19 1275605
[11] Mitzi D B 2005 Inorg. Chem. 44 7078
[12] Chang S J, Hsiao C H, Hung S C, Chih S H, Lan B W, Wang S B, Chang S P, Cheng Y C, Li T C and Huang B R 2010 J. Electrochem. Soc. 157 K1
[13] Yang C S, Hong D Y, Lin C Y, Chou W C, Ro C S, Uen W Y, Lan W H and Tu S L 1998 J. Appl. Phys. 83 2555
[14] Park W I, An S J, Yang J L, Yi G C, Hong S, Joo T and Kim M 2004 J. Phys. Chem. B 108 15457
[15] Yasan A, McClintock R, Mayes K, Kim D H, Kung P and Razeghi M 2003 Appl. Phys. Lett. 83 4083
[16] Tournie E, Morhain C, Leroux M, Ongaretto C, Faurie J P 1995 Appl. Phys. Lett. 67 103
Chapter 6
[1] Javey A, Nam S W, Friedman R S, Yan H and Lieber C M 2007 Nano Lett. 7 773
[2] Wang D and Lieber C M 2003 Nature Mater. 2 355
[3] Zhu J, Peng H, Chan C K, Jarausch K, Zhang X F and Cui Y 2007 Nano Lett. 7 1095
[4] Jung Y, Ko D and Agarwal R 2007 Nano Lett. 7 264
[5] May S J, Zheng J, Wessels B W and Lauhon L J 2005 AdV. Mater. 17 598
[6] Manna L, Milliron D J, Meisel A, Scher E C and Alivisatos A P 2003 Nature Mater. 2 382
[7] Dick K A, Deppert K, Larsson M W, Martensson T, Seifert W, Wallenberg L R and Samuelson L 2004 Nat. Mater. 3 380
[8] Hull K L, Grebinski J W, Kosel T H and Kuno M 2005 Chem. Mater. 17 4416
[9] Kuno M, Ahmad O, Protasenko V, Bacinello D and Kosel T H 2006 Chem. Mater. 18 5722
[10] Grebinski J W, Hull K L, Zhang J, Kosel T H and Kuno M 2004 Chem.Mater. 16 5260
[11] Hofmann S, Ducati C, Neill R J, Piscanec S, Ferrari A C, Geng J, Dunin-Borkowski R E and Robertson J 2003 J. Appl. Phys. 94 6005
[12] Tchernycheva M, Cirlin G E, Patriarche G, Travers L, Zwiller V, Perinetti U and Harmand J C 2007 Nano. Lett. 7 1500
[13] Colli A, Hofmann S, Ferrari C, Ducati F, Martelli F, Rubini S, Cabrini S, Franciosi A and Robertson J 2005 Appl. Phys. Lett. 86 153103
[14] Shim H W, Zhang Y and Huang H 2008 J. Appl. Phys. 104 063511
[15] Johansson J, Karlsson L S, Svensson C P T, Martensson T, Wacaster B A, Deppert K, Samuelson L and Seifert W 2006 Nature Mater. 5 574
[16] Hao Y, Meng G, Wang Z L, Ye C and Zhang L 2006 Nano Lett. 6 1650
[17] Spinulescu-Carnaru 1966 Phys. Status Solidi 18 769
[18] Korneeva 1962 Sov. Phys. Crystallogr. (Engl. Transl.) 6 505
[19] Hiei F, Ikeda M, Ozawa M, Miyajima T, Ishibashi A and Akimoto K 1993 Electron. Lett. 29 878
[20] Lee C, Park S and Jun J 2009 Journal of the Korean Physical Society 55 554
Chapter 7
[1] Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T and Golberg D 2009 Adv. Mater. 21 5016
校內:2015-07-12公開