簡易檢索 / 詳目顯示

研究生: 彭玄慧
Peng, Hsuan-Hui
論文名稱: 評估益生菌對於嬰幼兒期壓力暴露所誘導恐懼學習增強之治療效果
Evaluating the beneficial effects of probiotic treatment on infant stress exposure-induced persistent enhancement of fear learning
指導教授: 許桂森
Hsu, Kuei-Sen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 65
中文關鍵詞: 母體分離下視丘-腦下垂體-腎上腺軸益生菌恐懼記憶
外文關鍵詞: maternal separation, HPA axis, gut-brain axis, probiotic, fear memory
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 母體分離壓力 (Maternal separation, MS) 是一種廣泛被利用作為早期生活壓力的動物模式。許多的研究指出其會導致精神生理的功能缺損。此外,與壓力反應有密切關係的下視丘-腦下垂體-腎上腺軸 (hypothalamic-pituitary-adrenal axis, HPA axis) 活性也會受到母體分離調控。腸-腦軸 (Gut-brain axis) 由中樞及腸道神經系統構成,因而做為一個有力支持壓力同時改變腸道環境與大腦功能的途徑。先前的研究指出,腸道中菌種的組成,會受到環境的調控,而其中壓力即是一種重要因素。近年來有許多的研究關注於藉由益生菌改善腸道菌相失衡,進而調節壓力狀態的作用。因此,本篇研究主要的研究目的在於評估益生菌治療對於母體分離的早期生活壓力所產生的有益效應。利用出生早期的Sprague-Dawley (SD) 大鼠,主要探討控制組、母體分離組及益生菌治療組在聽覺恐懼制約學習後,恐懼記憶表現之程度。實驗結果顯示,母體分離的幼鼠 [在出生後第二天至第十四天,每天與母鼠分離三小時] 恐懼記憶增強並能持續表現,同時伴隨比較焦慮的行為表現。而經由母體投予由鼠李糖乳桿菌 (Lactobacillus rhamnosus) 及瑞士乳桿菌 (Lactobacillus helveticus) 組成的市售益生菌-Lacidofil的治療,我們發現益生菌使母體分離之幼鼠腸道菌種組成改變,聽覺恐懼制約學習記憶與焦慮行為獲得改善。此外,我們也發現經歷母體分離幼鼠的HPA axis活性比控制組來的高,說明其壓力感受性可能較好,而益生菌治療能使增加的活性,調降回正常狀態。並且,經過聽覺恐懼制約學習後,獲得一急性壓力刺激,母體分離的幼鼠在基底外側杏仁核 (Basolateral amygdala, BLA) 表現較高的c-fos與腦源性神經滋養因子 (brain-derived neurotrophic factor, BDNF),反應該組幼鼠學習恐懼時,較多神經細胞被活化,如果透過補充益生菌治療,則消退了母體分離所誘發增強的神經元活性。綜合上述的研究結果,我們認為益生菌的治療的確可以改變腸道環境,進而對早期生活壓力所引發的情緒與記憶障礙,產生有效地改善作用。

    Maternal separation (MS) is a kind of early-life stress (ELS) results in psychiatric dysfunction. In addition, MS model leads to behavioral changes due to alteration of hypothalamic-pituitary-adrenal (HPA) axis function. The gut-brain axis consists of the central nervous and the enteric system, connecting the brain with the intestinal functions. Exactly, HPA axis is a potential mechanism involves in regulating the gut-brain axis. Moreover, many researches indicated that gut microbial dysbiosis would change brain homeostasis and plasticity. There has demonstrated that a probiotic formulation, Lacidofil (Lactobacillus rhamnosus and Lactobacillus helveticus) has beneficial impacts on gut and brain activities. Thence, this proposal is to investigate whether microbial composition differently induced by probiotic treatment is associated with ELS-induced revise in emotional development. We found that MS during early life of rats displayed enhancement in long-term fear memory retention and showed anxiety-like behavior. By contrast, Lacidofil treatment significantly reduced persist expression of fear memory in infant rats exposed to MS. Simultaneously, we also found Lacidofil could recover HPA axis activity in infant rats exposed to MS. Altogether, these finding demonstrate that probiotic treatment has a potential role to rescue normal developmental trajectories of fear retention in infant rats suffered from ELS.

    中文摘要 I 英文延伸摘要 IV 目錄 VIII 圖目錄 IX 縮寫檢索表 X 第一章 緒論 1 第二章 材料與方法 9 2-1. 實驗動物 2-2. 母體分離 2-3. 益生菌補充 2-4. 腦源性神經滋養因子濃度檢測 2-5. 免疫組織螢光染色法 2-6. 腸道菌16s 核醣體DNA定序 2-7. 動物行為實驗 2-8. 下視丘/腦下垂體/腎上腺軸線活性分析 2-9. 統計與分析方法 第三章 實驗結果 24 第四章 討論 36 第五章 圖表 44 第六章 參考文獻 57

    Aisa, B., Tordera, R., Lasheras, B., Del Rio, J., Ramirez, M. J. (2008) Effects of maternal separation on hypothalamic-pituitary-adrenal responses, cognition and vulnerability to stress in adult female rats. Neuroscience 154: 1218-1226.
    Akers, K. G., Martinez-Canabal, A., Restivo, L., Yiu, A. P., De Cristofaro, A., Hsiang, H. L., Wheeler, A. L., Guskjolen, A., Niibori, Y., Shoji, H., Ohira, K., Richards, B. A., Miyakawa, T., Josselyn, S. A., Frankland, P. W. (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344: 598-602.
    Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M., LeDoux, J. E. (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8: 229-242.
    Byun, R., Nadkarni, M. A., Chhour, K. L., Martin, F. E., Jacques, N. A., Hunter, N. (2004) Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol 42: 3128-3136.
    Bonati, M., Clavenna, A. (2005) The epidemiology of psychotropic drug use in children and adolescents. Int Rev Psychiatry 17: 181-188.
    Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., Deng, Y., Blennerhassett, P. A., Fahnestock, M., Moine, D., Berger, B., Huizinga, J. D., Kunze, W., McLean, P. G., Bergonzelli, G. E., Collins, S. M., Verdu, E. F. (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23: 1132-1139.
    Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., Cryan, J. F. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108: 16050-16055.
    Bagot, R. C., Tse, Y. C., Nguyen, H. B., Wong, A. S., Meaney, M. J., Wong, T. P. (2012) Maternal care influences hippocampal N-methyl-D-aspartate receptor function and dynamic regulation by corticosterone in adulthood. Biol Psychiatry 72: 491-498.
    Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., Korecka, A., Bakocevic, N., Ng, L. G., Kundu, P., Gulyas, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B. T., Diamond, B., Pettersson, S. (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6: 263ra158.
    Campbell, B. A., Spear, N. E. (1972) Ontogeny of memory. Psychol Rev 79: 215-236.
    Crawley, J., Goodwin, F. K . (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13: 167-170.
    Cameron, N., Del Corpo, A., Diorio, J., McAllister, K., Sharma, S., Meaney, M. J. (2008) Maternal programming of sexual behavior and hypothalamic- pituitary- gonadal function in the female rat. PLoS One 3: e2210.
    Callaghan, B. L., Richardson, R. (2012) The effect of adverse rearing environments on persistent memories in young rats: removing the brakes on infant fear memories. Transl Psychiatry 2: e138.
    Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., Dinan, T. G., Cryan, J. F. (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18: 666-673.
    Diop, L., Guillou, S., Durand, H. (2008) Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind, placebo-controlled, randomized trial. Nutr Res 28: 1-5.
    Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., Hibberd, M. L., Forssberg, H., Pettersson, S. (2011) Normal gut microbiota modulates brain development and behavior. PNAS 108: 3047-3052.
    Danielewicz, J., Hess, G. (2014) Early life stress alters synaptic modification range in the rat lateral amygdala. Behav Brain Res 265: 32-37.
    De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Backhed, F., Mithieux, G. (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156: 84-96.
    Enck, P., Zimmermann, K., Menke, G., Muller-Lissner, S., Martens, U., Klosterhalfen, S. (2008) A mixture of Escherichia coli (DSM 17252) and Enterococcus faecalis (DSM 16440) for treatment of the irritable bowel syndrome--a randomized controlled trial with primary care physicians. Neurogastroenterol Motil 20: 1103-1109.
    Francis, D. D., Champagne, F. A., Liu, D., Meaney, M. J. (1999) Maternal care, gene expression, and the development of individual differences in stress reactivity. Ann N Y Acad Sci 896: 66-84.
    Foster, L. M., Tompkins, T. A., Dahl, W. J. (2011) A comprehensive post-market review of studies on a probiotic product containing Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011. Benef Microbes 2: 319-334.
    Ghia, J. E., Blennerhassett, P., Deng, Y., Verdu, E. F., Khan, W. I., Collins, S. M. (2009) Reactivation of inflammatory bowel disease in a mouse model of depression. Gastroenterology 136: 2280-2288.e2281-2284.
    Gareau, M. G., Wine, E., Rodrigues, D. M., Cho, J. H., Whary, M. T., Philpott, D. J., Macqueen, G., Sherman, P. M. (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60: 307-317.
    Grenham, S., Clarke, G., Cryan, J. F., Dinan, T. G. (2011) Brain-gut- microbe communication in health and disease. Front Physiol 2: 94.
    Hubbard, D. T., Nakashima, B. R., Lee, I., Takahashi, L. K. (2007) Activation of basolateral amygdala corticotropin-releasing factor 1 receptors modulates the consolidation of contextual fear. Neuroscience 150: 818-828.
    Herbel, S. R., Lauzat, B., von Nickisch-Rosenegk, M., Kuhn, M., Murugaiyan, J., Wieler, L. H., Guenther, S. (2013) Species-specific quantification of probiotic lactobacilli in yoghurt by quantitative real-time PCR. J Appl Microbiol 115: 1402-1410.
    Heldt, S. A., Zimmermann, K., Parker, K., Gaval, M., Weinshenker, D., Ressler, K. J. (2014) BDNF deletion or TrkB impairment in amygdala inhibits both appetitive and aversive learning. J Neurosci 34: 2444-2450.
    Josselyn, S. A., Frankland, P. W. (2012) Infantile amnesia: a neurogenic hypothesis. Learn Mem 19: 423-433.
    Jaferi, A., Pickel, V. M. (2009) Mu-opioid and corticotropin-releasing-factor receptors show largely postsynaptic co-expression, and separate presynaptic distributions, in the mouse central amygdala and bed nucleus of the stria terminalis. Neuroscience 159: 526-539.
    Jang, S. E., Lim, S. M., Jeong, J. J., Jang, H. M., Lee, H. J., Han, M. J., Kim, D. H. (2018) Gastrointestinal inflammation by gut microbiota disturbance induces memory impairment in mice. Mucosal Immunol 11: 369-379.
    Kim, J. H., Richardson, R. (2007) Immediate post-reminder injection of gamma-amino butyric acid (GABA) agonist midazolam attenuates reactivation of forgotten fear in the infant rat. Behav Neurosci 121: 1328-1332.
    Karimi, K., Inman, M. D., Bienenstock, J., Forsythe, P. (2009) Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med 179: 186-193.
    Kuzniewska, B., Rejmak, E., Malik, A. R., Jaworski, J., Kaczmarek, L., Kalita, K. (2013) Brain-derived neurotrophic factor induces matrix metalloproteinase 9 expression in neurons via the serum response factor/c-Fos pathway. Mol Cell Biol 33: 2149-2162.
    Levine, S. (2005) Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 30: 939-946.
    Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y., Jin, F. (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310: 561-577.
    Meaney, M. J. (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24: 1161-1192.
    Martinez, V., Wang, L., Rivier, J. E., Vale, W., Tache, Y. (2002) Differential actions of peripheral corticotropin-releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: role of CRF receptor subtypes 1 and 2. J Pharmacol Exp Ther 301: 611-617.
    Ma, D., Forsythe, P., Bienenstock, J. (2004) Live Lactobacillus rhamnosus [corrected] is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect Immun 72: 5308-5314.
    Maren, S. (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47: 783-786.
    Medzhitov, R. (2007) Recognition of microorganisms and activation of the immune response. Nature 449: 819-826.
    Moriceau, S., Shionoya, K., Jakubs, K., Sullivan, R. M. (2009) Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci 29: 15745-15755.
    Monsey, M. S., Boyle, L. M., Zhang, M. L., Nguyen, C. P., Kronman, H. G., Ota, K. T., Duman, R. S., Taylor, J. R., Schafe, G. E. (2014) Chronic corticosterone exposure persistently elevates the expression of memory-related genes in the lateral amygdala and enhances the consolidation of a Pavlovian fear memory. PLoS One 9: e91530.
    Newman, D. L., Moffitt, T. E., Caspi, A., Magdol, L., Silva, P. A., Stanton, W. R. (1996) Psychiatric disorder in a birth cohort of young adults: prevalence, comorbidity, clinical significance, and new case incidence from ages 11 to 21. J Consult Clin Psychol 64: 552-562.
    Neufeld, K. M., Kang, N., Bienenstock, J., Foster, J. A. (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23: 255-264.
    O'Mahony, S. M., Hyland, N. P., Dinan, T. G., Cryan, J. F. (2011) Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology 214: 71-88.
    Ohsawa, K., Uchida, N., Ohki, K., Nakamura, Y., Yokogoshi, H. (2015) Lactobacillus helveticus-fermented milk improves learning and memory in mice. Nutr Neurosci 18: 232-240.
    Pellow, S., Chopin, P., File, S. E., Briley, M. (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14: 149-167.
    Plotsky, P. M., Meaney, M. J. (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res 18: 195-200.
    Pine, D. S., Helfinstein, S. M., Bar-Haim, Y., Nelson, E., Fox, N. A. (2009) Challenges in developing novel treatments for childhood disorders: lessons from research on anxiety. Neuropsychopharmacology 34: 213-228.
    Pena, C. J., Neugut, Y. D., Calarco, C. A., Champagne, F. A. (2014) Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. Eur J Neurosci 39: 946-956.
    Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., Petersen, K. F., Kibbey, R. G., Goodman, A. L., Shulman, G. I. (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534: 213-217.
    Park, J., Lee, J., Yeom, Z., Heo, D., Lim, Y. H. (2017) Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci Rep 7: 14520.
    Park, J. Y., Choi, J., Lee, Y., Lee, J. E., Lee, E. H., Kwon, H. J., Yang, J., Jeong, B. R., Kim, Y. K., Han, P. L. (2017) Metagenome Analysis of Bodily Microbiota in a Mouse Model of Alzheimer Disease Using Bacteria-derived Membrane Vesicles in Blood. Exp Neurobiol 26: 369-379.
    Roozendaal, B., Schelling, G., McGaugh, J. L. (2008) Corticotropin- releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the beta-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation. J Neurosci 28: 6642-6651.
    Spear, L. P., Brake, S. C. (1983) Periadolescence: age-dependent behavior and psychopharmacological responsivity in rats. Dev Psychobiol 16: 83-109.
    Seoane, A., Tinsley, C. J., Brown, M. W. (2012) Interfering with Fos expression in rat perirhinal cortex impairs recognition memory. Hippocampus 22: 2101-2113.
    Sayin, S. I., Wahlstrom, A., Felin, J., Jantti, S., Marschall, H. U., Bamberg, K., Angelin, B., Hyotylainen, T., Oresic, M., Backhed, F. (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17: 225-235.
    Sampath, D., Sabitha, K. R., Hegde, P., Jayakrishnan, H. R., Kutty, B. M., Chattarji, S., Rangarajan, G., Laxmi, T. R. (2014) A study on fear memory retrieval and REM sleep in maternal separation and isolation stressed rats. Behav Brain Res 273: 144-154.
    Scantlebury, M. H., Chun, K. C., Ma, S. C., Rho, J. M., Kim, D. Y. (2017) Adrenocorticotropic hormone protects learning and memory function in epileptic Kcna1-null mice. Neurosci Lett 645: 14-18.
    Thompson, B. L., Erickson, K., Schulkin, J., Rosen, J. B. (2004) Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behav Brain Res 149: 209-215.
    Thoeringer, C. K., Henes, K., Eder, M., Dahlhoff, M., Wurst, W., Holsboer, F., Deussing, J. M., Moosmang, S., Wotjak, C. T. (2012) Consolidation of remote fear memories involves Corticotropin-Releasing Hormone (CRH) receptor type 1-mediated enhancement of AMPA receptor GluR1 signaling in the dentate gyrus. Neuropsychopharmacology 37: 787-796.
    Tamburini, S., Shen, N., Wu, H. C., Clemente, J. C. (2016) The microbiome in early life: implications for health outcomes. Nat Med 22: 713-722.
    Wang, F., Liu, F., Liu, H. (2016) Effect of exposure to staphylococcus aureus, particulate matter, and their combination on the neurobehavioral function of mice. Environ Toxicol Pharmacol 47: 175-181.
    Yang, H., Xing, R., Hu, L., Liu, S., & Li, P. (2016) Accumulation of gamma-aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy. Microb Biotechnol 9: 478-485.
    Yu, M., Jia, H., Zhou, C., Yang, Y., Zhao, Y., Yang, M., Zou, Z. (2017) Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal 138: 231-239.

    無法下載圖示 校內:2023-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE