簡易檢索 / 詳目顯示

研究生: 黃博彥
Huang, Po-Yen
論文名稱: 石墨烯輔助選擇性化學鍍花型銀結構及其表面增強拉曼散射分子感測器之應用
Graphene Assisted Selective Chemical Plating of Flower -like Silver Structures And Their Application to SERS Molecular Sensors
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 表面增強拉曼石墨銀金屬粒子
外文關鍵詞: SERS, graphite, silver, nano-particles, graphene, adenine
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯近年來因為其快速發展在各種領域注入新活力,因為其生物相容性,因此也在生醫方面也占據了不乏的地位。

    其中石墨烯用於表面增強拉曼散射(Surface Enhanced Raman Scattering,
    SERS)技術被快速發展,因其具備抑制背景螢光的功能提升訊躁比(Signal to Noise ratio) ,因此本文提出石墨烯複合銀金屬電漿子結構於銅膜
    NCD 基板製作術,以熱化學氣相沉積法在鍍銅膜的NCD 基板上成長石墨
    結構,隨後以銀反應液進行無極電鍍,由於自由能差異會在沒有石墨的間隙
    內沉積銀金屬花瓣奈米顆粒,藉由控制銀金屬花瓣奈米顆粒的奈米尺度、密度、分布,並以石墨烯調控奈米金屬顆粒間距離至適當的位置,在雷射光激發下顆粒間電場相互耦合並增強物理機制,而石墨烯可以藉由螢光淬滅與ππ*吸引待測分子提供增強化學機制,兩機制互輔互成為此基板高表現建立基礎。

    Graphene is a monoatomic layer of graphite. It is a two-dimension structural material with excellent carrier mobilities and field effect characteristics. Graphene is also a biocompatible carbon material for biomedical measurement and research. Among applications of carbon materials to surface enhanced Raman scattering (SERS), graphene assisted SERS has been rapidly developed. Therefore, graphene-silver plasmonic coupling structure is proposed using copper film on NCD substrates with graphene deposition by thermal chemical vapor deposition,which lead to greatly enhanced strength of signal from Raman scattering of probe molecules on the substrate as an effective means of detecting,identifying, and measuring low concentration molecules of scientific and technological significance. By combining self-assembled silver nanoparticles with graphene on NCD substrate, it enhances the detect limitation to 10-9M of adenine molecules. These results may pave the way toward a large-scale and low-cost SERS sensors with high performance.

    摘要..................... I Abstract....................II 致謝.....................VIII 表目錄.....................XI 圖目錄....................XII 第一章 緒論 1 1.1 前言 1 1.2 碳的同素異形體 1 1.2.1 鑽石 1 1.2.2 石墨 3 1.2.3 石墨烯 3 1.2.4 奈米碳管 4 1.2.5 富勒烯 4 1.3 研究動機 5 第二章 背景理論與文獻回顧 7 2.1 拉曼光譜檢測 7 2.2 表面增強拉曼散射相關理論 16 2.2.1電磁場物理機制 16 2.2.2化學機制 20 2.3 近期應用於表面增強拉曼散射基板技術 22 第三章 實驗儀器與介紹 35 3.1 實驗製程設備 35 3.1.1 熱化學氣相沉積機台(Thermal CVD) 35 3.1.2 化學反應槽設置 39 3.1.3 射頻磁控電漿濺鍍系統(RF magnetron Sputtering system) 40 3.2 分析與量測儀器 41 3.2.1 光學顯微鏡(Optical microscope, OM) 41 3.2.2 拉曼光譜儀(Raman spectroscopy) 42 第四章 實驗結果與討論 44 4.1 石墨烯的製備 44 4.1.1 石墨烯成長於銅箔上 44 4.2 非晶碳與石墨烯複合銀奈米花瓣金屬粒子結構於表面增強拉曼散射基板製備與量測分析 46 4.2.1 於NCD奈米鑽石銅膜基板成長碳膜並成長銀奈米花瓣金屬粒子 46 4.2.2 於SiO2銅膜基板成長碳膜並成長銀奈米花瓣金屬粒子 56 4.2.3 於銅箔基板成長碳膜並成長銀奈米花瓣金屬粒子 60 4.3銀奈米花瓣金屬粒子結構於表面增強拉曼散射基板製備與量測分析 62 4.3.1 於NCD奈米鑽石銅膜基板成長銀奈米花瓣金屬粒子 62 4.3.2 於SiO2銅膜基板成長銀奈米花瓣金屬粒子 65 第五章 結語與未來展望 70 第六章 參考文獻 71

    [1] M. I. J. M. t. Katsnelson, "Graphene: carbon in two dimensions," Elsevier, vol. 10, no. 1-2, pp. 20-27, 2007.
    [2] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," scienceopen, vol. 306, no. 5696, pp. 666-669, 2004.
    [3] J. H. Seol et al., "Two-dimensional phonon transport in supported graphene," sciencemag., vol. 328, no. 5975, pp. 213-216, 2010.
    [4] C. Lee, X. Wei, J. W. Kysar, and J. J. s. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, vol. 321, no. 5887, pp. 385-388, 2008.
    [5] R. R. Nair et al., "Fine structure constant defines visual transparency of graphene," sciencemag., vol. 320, no. 5881, pp. 1308-1308, 2008.
    [6] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. J. P. r. l. Ordejón, "Phonon dispersion in graphite," Physical review, vol. 92, no. 7, p. 075501, 2004.
    [7] M. Dresselhaus, A. Jorio, and R. J. A. R. C. M. P. Saito, "Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy," annualreviews, vol. 1, no. 1, pp. 89-108, 2010.
    [8] N. Colthup, Introduction to infrared and Raman spectroscopy. Elsevier, 2012.
    [9] J. Ferraro, K. Nakamoto, and C. W. Brown, "Introductory raman spectroscopy. 2003," ed: Academic press.
    [10] D. Skoog, F. J. Holler, and S. J. C. Crouch, Canada, "Principles of Instrumental Analysis. Thomson Brooks," 2007.
    [11] M. T. Deschaines et al Thermo Fisher Scientific, WI, USA.
    [12] C. Kittel, Introduction to solid state physics. 2005: Wiley.
    [13] Available: http://www2.ess.nthu.edu.tw/news/images/pic/2007.10.24.pdf
    [14] R. W. J. P. o. t. P. S. o. L. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," iopscience, vol. 18, no. 1, p. 269, 1902.
    [15] U. J. J. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," osapublishing, vol. 31, no. 3, pp. 213-222, 1941.
    [16] A. Hessel and A. J. A. o. Oliner, "A new theory of Wood’s anomalies on optical gratings," osapublishing, vol. 4, no. 10, pp. 1275-1297, 1965.
    [17] (2007). Available: http://www2.ess.nthu.edu.tw/news/images/pic/2007.10.24.pdf
    [18] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," ed: ACS Publications, 2003.
    [19] C. Zhang et al., "SERS activated platform with three-dimensional hot spots and tunable nanometer gap," Sensors and Actuators B-Chemical, vol. 258, pp. 163-171, 2018.
    [20] C. Zhang et al., "SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure," osapublishing, vol. 23, no. 19, pp. 24811-24821, 2015.
    [21] K. Li et al., "Fabrication of tunable hierarchical MXene@ AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances," Springer, pp. 1-9, 2018.
    [22] Z. Li et al., "3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis," Nanoscale, vol. 10, no. 13, pp. 5897-5905, 2018.
    [23] C. Li et al., "Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering," osapublishing, vol. 25, no. 17, pp. 20631-20641, 2017.
    [24] A. Simo, V. Joseph, R. Fenger, J. Kneipp, and K. J. C. Rademann, "Long‐Term Stable Silver Subsurface Ion‐Exchanged Glasses for SERS Applications," Wiley Online Library, vol. 12, no. 9, pp. 1683-1688, 2011.
    [25] P. Suchomel et al., "Highly efficient silver particle layers on glass substrate synthesized by the sonochemical method for surface enhanced Raman spectroscopy purposes," Elsevier, vol. 32, pp. 165-172, 2016.
    [26] F. Feng, G. Zhi, H. S. Jia, L. Cheng, Y. T. Tian, and X. J. J. N. Li, "SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array," Nanotechnology, vol. 20, no. 29, p. 295501, 2009.
    [27] M. A. El-Aal, T. Seto, M. Kumita, A. A. Abdelaziz, and Y. J. O. M. Otani, "Synthesis of silver nanoparticles film by spark discharge deposition for surface-enhanced Raman scattering," Elsevier, vol. 83, pp. 263-271, 2018.
    [28] M. Pagliai, S. Caporali, M. Muniz-Miranda, G. Pratesi, and V. J. T. j. o. p. c. l. Schettino, "SERS, XPS, and DFT study of adenine adsorption on silver and gold surfaces," ACS Publications, vol. 3, no. 2, pp. 242-245, 2012.
    [29] B. Giese and D. J. T. J. o. P. C. B. McNaughton, "Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces," ACS Publications, vol. 106, no. 1, pp. 101-112, 2002.
    [30] B. Giese and D. J. T. J. o. P. C. B. McNaughton, "Surface-enhanced Raman spectroscopic study of uracil. The influence of the surface substrate, surface potential, and pH," ACS Publications, vol. 106, no. 6, pp. 1461-1470, 2002.
    [31] Daejong Yang et al., "Simple, Large-Scale Fabrication of Uniform Raman-Enhancing Substrate with Enhancement Saturation," ACS Appl. Mater. Interfaces, vol. 9, p. 19092−19101, 2017.
    [32] E. Rauls, S. Blankenburg, and W. J. S. S. Schmidt, "DFT calculations of adenine adsorption on coin metal (1 1 0) surfaces," Elsevier, vol. 602, no. 13, pp. 2170-2174, 2008.
    [33] J. Kundu et al., "Adenine− and adenosine monophosphate (AMP)− gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies," ACS Publications, vol. 113, no. 32, pp. 14390-14397, 2009.
    [34] M. Rosa, S. Corni, R. J. J. o. c. t. Di Felice, and computation, "Interaction of nucleic acid bases with the Au (111) surface," ACS Publications, vol. 9, no. 10, pp. 4552-4561, 2013.
    [35] X. F. Lang, P. G. Yin, T. T. You, L. Jiang, and L. J. C. Guo, "A DFT Investigation of Surface‐Enhanced Raman Scattering of Adenine and 2′‐Deoxyadenosine 5′‐Monophosphate on Ag20 Nanoclusters," Wiley Online Library, vol. 12, no. 13, pp. 2468-2475, 2011.
    [36] M. Muniz-Miranda, C. Gellini, M. Pagliai, M. Innocenti, P. R. Salvi, and V. J. T. J. o. P. C. C. Schettino, "SERS and computational studies on microRNA chains adsorbed on silver surfaces," ACS Publications, vol. 114, no. 32, pp. 13730-13735, 2010.
    [37] R. Huang, H.-T. Yang, L. Cui, D.-Y. Wu, B. Ren, and Z.-Q. J. T. J. o. P. C. C. Tian, "Structural and charge sensitivity of surface-enhanced Raman spectroscopy of adenine on silver surface: a quantum chemical study," ACS Publications, vol. 117, no. 45, pp. 23730-23737, 2013.
    [38] G. Yao, Z. Zhai, J. Zhong, and Q. J. T. J. o. P. C. C. Huang, "DFT and SERS Study of 15N Full-Labeled Adenine Adsorption on Silver and Gold Surfaces," ACS Publications, vol. 121, no. 18, pp. 9869-9878, 2017.
    [39] A. Campion and P. J. C. s. r. Kambhampati, "Surface-enhanced Raman scattering," Chemical society reviews, vol. 27, no. 4, pp. 241-250, 1998.
    [40] S. G. Harroun, Y. Zhang, T. H. Chen, C. L. Hsu, and H. T. J. J. o. R. S. Chang, "Adsorption orientation of 8‐azaadenine on silver nanoparticles determined by SERS and DFT," Wiley Online Library, vol. 49, no. 2, pp. 376-382, 2018.
    [41] S. G. J. C. Harroun, "The Controversial Orientation of Adenine on Gold and Silver," Wiley Online Library, vol. 19, no. 9, pp. 1003-1015, 2018.
    [42] L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. J. J. o. t. A. C. S. Liu, "Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy," ACS Publications, vol. 131, no. 29, pp. 9890-9891, 2009.
    [43] R. Panneerselvam, L. Xiao, K. B. Waites, T. P. Atkinson, and R. A. J. V. S. Dluhy, "A rapid and simple chemical method for the preparation of Ag colloids for surface-enhanced Raman spectroscopy using the Ag mirror reaction," Elsevier, vol. 98, pp. 1-7, 2018.
    [44] J. J. M. L. Bi, "Electrodeposited silver nanoflowers as sensitive surface-enhanced Raman scattering sensing substrates," Elsevier, vol. 236, pp. 398-402, 2019.
    [45] H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. J. A. F. M. Zhu, "Arrays of cone‐shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface‐enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls," Wiley Online Library, vol. 22, no. 1, pp. 218-224, 2012.
    [46] Y. Liu, X. Zhang, J. Su, H. Li, Q. Zhang, and Y. J. O. e. Gao, "Ag nanoparticles@ ZnO nanowire composite arrays: an absorption enhanced UV photodetector," osapublishing, vol. 22, no. 24, pp. 30148-30155, 2014.
    [47] Z. Dai et al., "Obviously angular, cuboid-shaped TiO2 nanowire arrays decorated with Ag nanoparticle as ultrasensitive 3D surface-enhanced Raman scattering substrates," ACS Publications, vol. 118, no. 39, pp. 22711-22718, 2014.
    [48] F. Bai et al., "Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering," APL Materials, vol. 3, no. 5, p. 056101, 2015.
    [49] S.-Y. Fu, Y.-K. Hsu, M.-H. Chen, C.-J. Chuang, Y.-C. Chen, and Y.-G. J. O. e. Lin, "Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates," osapublishing, vol. 22, no. 12, pp. 14617-14624, 2014.
    [50] Q. Zhou et al., "Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates," Physical Chemistry, vol. 16, no. 8, pp. 3686-3692, 2014.
    [51] C.-W. Chiu, Y.-C. Lee, G.-B. Ou, C.-C. J. I. Cheng, and E. C. Research, "Controllable 3D hot-junctions of silver nanoparticles stabilized by amphiphilic tri-block copolymer/graphene oxide hybrid surfactants for use as surface-enhanced Raman scattering substrates," ACS Publications, vol. 56, no. 11, pp. 2935-2942, 2017.
    [52] Y. Zheng, A. Wang, Z. Wang, L. Fu, and F. J. M. R. Peng, "Facial synthesis of carrageenan/reduced graphene oxide/ag composite as efficient sers platform," Materials Research Express, vol. 20, no. 1, pp. 15-20, 2017.
    [53] D. Su, S. Jiang, M. Yu, G. Zhang, H. Liu, and M.-Y. J. N. Li, "Facile fabrication of configuration controllable self-assembled Al nanostructures as UV SERS substrates," Nanoscale, vol. 10, no. 48, pp. 22737-22744, 2018.
    [54] C. Chen et al., "High spatial resolution nanoslit SERS for single-molecule nucleobase sensing," Nature, vol. 9, no. 1, p. 1733, 2018.
    [55] A. C. Manikas, A. Papa, F. Causa, G. Romeo, and P. A. J. R. A. Netti, "Bimetallic Au/Ag nanoparticle loading on PNIPAAm–VAA–CS8 thermoresponsive hydrogel surfaces using ss-DNA coupling, and their SERS efficiency," RSC Advances, vol. 5, no. 18, pp. 13507-13512, 2015.
    [56] Y.-C. Lee and C.-W. J. N. Chiu, "Immobilization and 3D Hot-Junction Formation of Gold Nanoparticles on Two-Dimensional Silicate Nanoplatelets as Substrates for High-Efficiency Surface-Enhanced Raman Scattering Detection," Nanomaterials, vol. 9, no. 3, p. 324, 2019.

    無法下載圖示 校內:2024-07-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE