簡易檢索 / 詳目顯示

研究生: 傅立宇
Puc, Irwin
論文名稱: 皮膚幹細胞容易受登革病毒感染
Skin stem cells are highly permissive to dengue virus infection
指導教授: 彭貴春
Perng, Oscar
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 53
中文關鍵詞: 皮膚細胞幹細胞茲卡病毒登革病毒CD44成纖維細胞角質形成細胞上皮細胞
外文關鍵詞: Skin cells, Stem cells, Zika virus, Dengue virus, CD44, Keratinocytes, fibroblast, Epithelial cell
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革熱目前被認為是在熱帶和亞熱帶地區中最常見的蚊媒傳播疾病。全世界估計有25億人面臨感染的風險,每年約有5000萬至1億人得到登革熱。雖然大多數人不會出現明顯的症狀或只會有輕微的現象,像是頭痛,皮疹,肌肉和關節疼痛等,類似流感的症狀。少部分的人會發展成登革重症,如登革出血熱 (DHF)及登革休克症 (DSS)。而人體的皮膚是接觸任何病原體的第一道防線,其中皮膚細胞由多種細胞群組成,部分細胞群可以受到登革病毒(DENV)。為了更深入理解登革病毒感染的機制,我們利用登革病毒分別去感染三種皮膚細胞,HS68 (成纖維細胞)、A431(上皮細胞)和HaCAT(角質形成細胞)細胞來研究是否這些皮膚細胞可以受登革病毒感染。我們的結果顯示角質形成細胞和上皮細胞可以被登革病毒感染,而成纖維細胞無法支持登革病毒感染。我們也利用同為蚊媒傳播的茲卡病毒(ZIKV) 去感染細胞,令我們驚訝的是結果與登革病毒相反。我們還發現,與冷凍過後的骨與冷凍過後的骨髓 (Bone marrow) 相比,新鮮的骨髓很容易受到登革病毒感染。 從流式細胞儀分析結果顯示,新鮮骨髓中的幹細胞對登革病毒感染至關重要。進一步對皮膚細胞去做分析,發現到與其他細胞相比,角質形成細胞具有最多的幹細胞含量。而從角質形成細胞及上皮細胞中分選出來的幹細胞容易受到登革病毒的感染。通過蛋白質體學數據分析去鑑定這些皮膚細胞中的幹細胞群上可能作為登革病毒感染的受體,我們發現CD44可能是登革病毒感染幹細胞的受體。接著我們利用CD44的配體(ligand)透明質酸 (Hyuranic acid) 去阻斷CD44,再用登革病毒感染,結果顯示在加入透明質酸的組別中,病毒效價有顯著地降低。綜和以上結果,皮膚幹細胞容易受到登革病毒,而CD44可能是登革病毒感染皮膚幹細胞時的受體。

    Dengue is currently regarded as the most common arthropod-borne viral disease transmitted by Aedes mosquito in tropical and subtropical areas. Worldwide, an estimated 2.5 billion people are at risk of infection, 50-100 million infections occurring each year. While most individuals either experience no symptoms or mild dengue fever a flu-like illness with headache, rash, muscle and joint pain. A small percentage go on to develop a life-threatening condition like dengue hemorrhagic fever (DHF). Human skin is the first line of defense against any pathogens upon mosquito bite and contains several populations of cells which could facilitate initial infection and systemic spread of dengue virus (DENV) infection. To better understand the pathogenesis of DENV infection, three skin cells, HS68 (fibroblast), A431 (epithelial) and HaCAT (keratinocyte) cells were utilized to investigate the permissiveness of DENV infection. Our results showed that keratinocyte and epithelial cells were permissive to DENV infection, while fibroblast cells were less likely to support DENV infection. To our surprised, the permissiveness of Zika virus (ZIKV) infection showed the opposite effects of DENV infection. We also found that fresh bone marrow (BM) were easily infected by DENV when compared to Frozen BM. FACS analysis revealed that stem cells in fresh BM were essential for DENV infection. Further analysis of skin cells revealed that HaCAT cells had the highest stem cell content compared to the other cells. Sorted stem cells from keratinocyte or epithelial cell were highly permissive to DENV infection. Identification of possible DENV receptors on stem cell population by proteomics data analysis revealed CD44 as putative DENV receptor in stem cells. Blocking of CD44 by antibody or ligand Hyuranic acid demonstrated a significant decrease in viral titer upon infection with DENV. In conclusion skin stem cells were highly permissive to DENV infection and CD44 is likely the bona fide receptor in skin stem cells for DENV.

    Abstract I 中文摘要 II Acknowledgment III List of figures IV Abbreviation Index V Introduction 1 1. Dengue global distribution and importance 1 2. Characteristics of dengue virus 1 3. Dengue pathogenesis and challenges 2 4. Skin cells niche 3 5. Study Hypothesis 4 Materials and Methods 6 A. Materials 6 1. Cell lines and virus 6 2. Antibodies and Isotype 7 3. Magnetic Beads Isolation 8 4. Media and Reagents 8 5. Plastic and glass equipment 10 6. Instruments and Machines 12 7. Ingredients Used in Buffer and Medium 13 B. Methods 16 1. Cell Culture (BHK21, Vero Cells, A431, HS68 and HaCAT) 16 2. In vitro Infection of the bone marrow 16 3. Plaque assay 16 4. Cell sorting 17 5. Flow cytometry 17 6. Co-immunoprecipitation (Co-IP) and protein identification 18 7. Ultraviolet (UV) Crosslinking 18 8. Statistical analysis 18 Results 19 1. The permissiveness of skin cells for DENV and ZIKV varies between skin cell types. 19 2. Stem and progenitor cells were essential for DENV Infection in bone marrow, potentially being the initial target of DENV infection. 19 3. Sorted out Stem cell population of HaCAT and A431 were highly permissive to DENV infection. 20 4. Identification of possible DENV receptors on stem cell population by proteomics data analysis. 20 5. Blocking of CD44 showed a decrease in viral titer upon infection with DENV. 21 Discussion 22 References 25 Figures 29 Figure 1. Skin Cell used in the experiment. 29 Figure 2.Kinetic Replication Curves of Dengue and Zika Virus in skin cells. 30 Figure 3.tSNE summarizing flow cytometry analysis of cells population change in fresh and frozen bone marrow. 31 Figure 4.Stem and progenitor cells importance for dengue viral infection in bone marrow. 32 Figure 5.Percentage of stem cell population in skin cells. 33 Figure 6.Skin stem cell population permissive to DENV2 infected. 34 Figure 7.Proteomics data analysis reveals CD9, CD63, CD44 and CD151 as Putative possible DENV receptors. 35 Figure 8.Expression of CD9, CD63, CD44 and CD151 receptor in HaCAT and A431 cells. 36 Figure 9.Blocking of CD44 decreased the viral titer upon infection with DENV. 38 Supplementary Data 39 Figure S1.Kinetic replication curves of dengue and zika virus in skin cells. 39 Figure S2.In vitro infection of the bone marrow outline. 40 Figure S3.Magnetic bead sorting experiment outline. 41 Figure S4.A431 stem cell population infected with DENV2. 42 Figure S5.HaCAT stem cell population infected with DENV2. 43 Figure S6.General information of CD9, CD151, CD63 and CD44 DENV candidate receptors. 44

    1. Horstick, O., Y. Tozan, and A. Wilder-Smith, Reviewing Dengue:
    Still a Neglected Tropical Disease? PLOS Neglected Tropical
    Diseases, 2015. 9(4): p. e0003632.
    2. WHO. Neglected Tropical Diseases. World Health Organization
    2012.
    3. Rathakrishnan, A., et al., Cytokine Expression Profile of Dengue
    Patients at Different Phases of Illness. PLOS ONE, 2012. 7(12):
    p. e52215.
    4. Brady, O.J., et al., Refining the Global Spatial Limits of Dengue
    Virus Transmission by Evidence-Based Consensus. PLOS
    Neglected Tropical Diseases, 2012. 6(8): p. e1760.
    5. WHO. Dengue and severe dengue. World Health Organization
    2015.
    6. Bhatt, S., et al., The global distribution and burden of dengue.
    Nature, 2013. 496: p. 504.
    7. Gurugama, P., et al., Dengue viral infections. Indian Journal of
    Dermatology, 2010. 55(1): p. 68-78.
    8. Ludolfs, D., et al., Serological Differentiation of Infections with
    Dengue Virus Serotypes 1 to 4 by Using Recombinant
    Antigens. Journal of Clinical Microbiology 2002. 40(11): p.
    4317-4320.
    9. Malavige, G.N., et al., Dengue viral infections. Postgraduate
    Medical Journal 2004. 80(948): p. 588-601.
    10. Yung, C.-F., et al., Dengue Serotype-Specific Differences in
    Clinical Manifestation, Laboratory Parameters and Risk of
    Severe Disease in Adults, Singapore. The American Journal of
    Tropical Medicine and Hygiene 2015. 92(5): p. 999-1005.
    11. Guzman, M.G., et al., Dengue: a continuing global threat.
    Nature Reviews Microbiology, 2010. 8: p. S7.
    12. Guzman, M.G., et al., Dengue infection. Nature Reviews Disease
    Primers, 2016. 2: p. 16055.
    13. Byk, L.A. and A.V. Gamarnik, Properties and Functions of the
    Dengue Virus Capsid Protein. Virology, 2016. 3(1): p. 263-281.
    14. Perera, R. and R.J. Kuhn, Structural proteomics of dengue virus.
    Current Opinion in Microbiology, 2008. 11(4): p. 369-377.
    15. WHO. Comprehensive Guidelines for Prevention and Control of
    Dengue and Dengue Haemorrhagic Fever Revised and
    expanded 2011. World Health Organization 2011.
    16. WHO. Dengue guidelines for diagnosis, treatment, prevention
    and control: new edition. World Health Organization and the
    Special Programme for Research and Training in Tropical
    Diseases (TDR) 2009.
    17. Clyde, K., J.L. Kyle, and E. Harris, Recent Advances in
    Deciphering Viral and Host Determinants of Dengue Virus
    Replication and Pathogenesis. Journal of Virology, 2006.
    80(23): p. 11418-11431.
    18. John, D.V., Y.-S. Lin, and G.C. Perng, Biomarkers of severe
    dengue disease - a review. Journal of biomedical science, 2015.
    22: p. 83-83.
    19. Poole-Smith, B.K., et al., Discovery and characterization of
    potential prognostic biomarkers for dengue hemorrhagic
    fever. The American journal of tropical medicine and hygiene,
    2014. 91(6): p. 1218-1226.
    20. Patro, A.R.K., et al., Cytokine Signature Associated with Disease
    Severity in Dengue. Viruses 2019. 11(1): p. 34.
    21. Thein, T.-L., et al., Utilities and Limitations of the World Health
    Organization 2009 Warning Signs for Adult Dengue Severity.
    PLOS Neglected Tropical Diseases, 2013. 7(1): p. e2023.
    22. Wallace, D., et al., Challenges in the clinical development of a
    dengue vaccine. Current Opinion in Virology, 2013. 3(3): p.
    352-356.
    23. Ghosh, A. and L. Dar, Dengue vaccines: Challenges,
    development, current status and prospects. Expert Review of
    Vaccines, 2015. 33(1): p. 3-15.
    24. McArthur, M.A., M.B. Sztein, and R. Edelman, Dengue vaccines:
    recent developments, ongoing challenges and current
    candidates. Expert review of vaccines, 2013. 12(8): p. 933-953.
    25. McGrath, J.A., R.A.J. Eady, and F.M. Pope, Anatomy and
    organization of human skin, in Rook's Textbook of
    Dermatology. 2004, Blackwell Science Ltd Oxford: Oxford. p.
    3.1 - 3.84.
    26. Burns, T., et al., Rook’s textbook of dermatology. 8th Edition
    ed. 2004: Oxford: Blackwell Science. 4144.
    27. Bolognia, J.L., J.L. Jorizzo, and R.P. Rapini, Dermatology. 2nd
    Edition ed. Bolognia, Dermatology. 2008: Mosby. 2584
    28. Thingnes, J., et al., Understanding the Melanocyte Distribution
    in Human Epidermis: An Agent-Based Computational Model
    Approach. PLOS ONE, 2012. 7(7): p. e40377.
    29. Seneschal, J., et al., Human epidermal Langerhans cells
    maintain immune homeostasis in skin by activating skin
    resident regulatory T cells. Immunity, 2012. 36(5): p. 873-884.
    30. Stoitzner, P., et al., Langerhans cells cross-present antigen
    derived from skin. Proceedings of the National Academy of
    Sciences, 2006. 103(20): p. 7783-7788.
    31. Wilgus, T.A., S. Roy, and J.C. McDaniel, Neutrophils and Wound
    Repair: Positive Actions and Negative Reactions. Advances in
    wound care, 2013. 2(7): p. 379-388.
    32. Cerny, D., et al., Selective Susceptibility of Human Skin Antigen
    Presenting Cells to Productive Dengue Virus Infection. PLOS
    Pathogens, 2014. 10(12): p. e1004548.
    33. Noisakran, S., et al., Cells in Dengue Virus Infection In Vivo J
    Advances in Virology. Advances in Virology, 2010. 2010.
    34. Troupin, A., et al., A Role for Human Skin Mast Cells in Dengue
    Virus Infection and Systemic Spread. The Journal of
    Immunology, 2016. 197(11): p. 4382-4391.
    35. Hidari, K.I.P.J. and T. Suzuki, Dengue virus receptor. Tropical
    Medicine and Health, 2011. 39(4SUPPLEMENT): p. S37-S43.
    36. Cruz-Oliveira, C., et al., Receptors and routes of dengue virus
    entry into the host cells. FEMS Microbiology Reviews, 2015.
    39(2): p. 155-170.
    37. Fuchs, E., Skin stem cells: rising to the surface. The Journal of
    Cell Biology 2008. 180(2): p. 273-284.
    38. Watt, F.M., C.L. Celso, and V. Silva-Vargas, Epidermal stem cells:
    an update. Current Opinion in Genetics & Development, 2006.
    16(5): p. 518-524.
    39. Doorbar, J., Latent papillomavirus infections and their
    regulation. Current Opinion in Virology, 2013. 3(4): p. 416-421.
    40. Maglennon, G.A., P. McIntosh, and J. Doorbar, Persistence of
    viral DNA in the epithelial basal layer suggests a model for
    papillomavirus latency following immune regression. Virology,
    2011. 414(2): p. 153-163.
    41. Tassaneetrithep, B., et al., DC-SIGN (CD209) Mediates Dengue
    Virus Infection of Human Dendritic Cells. The Journal of
    Experimental Medicine 2003. 197(7): p. 823-829.
    42. Germi, R., et al., Heparan Sulfate-Mediated Binding of
    Infectious Dengue Virus Type 2 and Yellow Fever Virus.
    Virology, 2002. 292(1): p. 162-168.
    43. Miller, J.L., et al., The Mannose Receptor Mediates Dengue
    Virus Infection of Macrophages. PLOS Pathogens, 2008. 4(2): p.
    e17.
    44. Baer, A. and K. Kehn-Hall, Viral concentration determination
    through plaque assays: using traditional and novel overlay
    systems. Journal of visualized experiments : JoVE, 2014(93): p.
    e52065-e52065.
    45. Duangkhae, P., et al., Interplay between Keratinocytes and
    Myeloid Cells Drives Dengue Virus Spread in Human Skin.
    Journal of Investigative Dermatology, 2018. 138(3): p. 618-626.
    46. A, S., P. D, and L. L, Cell Cycle Reactivation in Skeletal Muscle
    and Other Terminally Differentiated Cells.: Austin (TX): Landes
    Bioscience.
    47. Murray, L.A., D.A. Knight, and G.J. Laurent, Chapter 15 -
    Fibroblasts, in Asthma and COPD (Second Edition), Academic
    Press: Oxford. p. 193-200.
    48. Longworth, M.S. and L.A. Laimins, Pathogenesis of human
    papillomaviruses in differentiating epithelia. Microbiology and
    molecular biology reviews : MMBR, 2004. 68(2): p. 362-372.
    49. Pinidis, P., et al., Human Papilloma Virus' Life Cycle and
    Carcinogenesis. Maedica, 2016. 11(1): p. 48-54.
    50. Bhattacharya, D.S., et al., Impact of structurally modifying
    hyaluronic acid on CD44 interaction. Journal of Materials
    Chemistry, 2017. 5(41): p. 8183-8192.
    51. Senbanjo, L.T. and M.A. Chellaiah, CD44: A Multifunctional Cell
    Surface Adhesion Receptor Is a Regulator of Progression and
    Metastasis of Cancer Cells. frontiers in Cell and Developmental
    Biology, 2017. 5(18).
    52. Spring, F.A., et al., The Ina and Inb blood group antigens are
    located on a glycoprotein of 80,000 MW (the CDw44
    glycoprotein) whose expression is influenced by the In(Lu)
    gene. Immunology, 1988. 64(1): p. 37-43.
    53. Quéré, R., et al., High levels of the adhesion molecule CD44 on
    leukemic cells generate acute myeloid leukemia relapse after
    withdrawal of the initial transforming event. Leukemia, 2010.
    25: p. 515.
    54. Bhat-Nakshatri, P., et al., Identification of FDA-approved Drugs
    Targeting Breast Cancer Stem Cells Along With Biomarkers of
    Sensitivity. Scientific Reports, 2013. 3: p. 2530.
    55. Molejon, M.I., et al., Targeting CD44 as a novel therapeutic
    approach for treating pancreatic cancer recurrence.
    Oncoscience, 2015. 2(6): p. 572-575.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE