| 研究生: |
郭俊良 Kuo, Chung-Liang |
|---|---|
| 論文名稱: |
利用電化學沉積法製作P型氧化鋅參雜Sb奈米柱之特性研究 Synthesis,Characterization, and Applications of P-type ZnO Nanowires doping with Sb by electrodeposition |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | P型氧化鋅 、電化學 、奈米柱場效電晶體。 |
| 外文關鍵詞: | p-type ZnO nanowire, elelctrodeposition, NWFET |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用電化學沉積法(Electrochemical depotion)製作氧化鋅摻雜銻之奈米柱。在實驗初段利用循環伏安法確認沉積電位大致上之範圍,並固定溫度下,探討了沉積電壓與pH值等參數,對奈米柱外表形貌和銻摻雜量之影響,包刮外表形貌、銻摻雜量、晶格結構等,以量化成長氧化鋅摻雜銻之最佳條件;隨後以奈米柱所製作之奈米柱場效元件(Nanowire field emission transistor)量測奈米柱之電性輸出特性與電性轉換特性,以確認利用電化學沉積成功的製作出p型氧化鋅摻雜銻之奈米柱,並最後對ZnO:Sb奈米柱進行XPS分析,確認造成氧化鋅摻雜銻之原因為何。
研究結果分析可知,由循環伏安法抓出沉積電壓應控制於 -0.9V以下,並由改變電壓參數之實驗,在經由SEM、XRD與EDS分析可知,成長過程中Sb會以金屬態沉積,需經由退火步驟方可消除;而在沉積電壓為 -0.8V時,ZnO:Sb奈米柱能夠形成纖鋅礦結構之六面體;最後經由EDS分析可知,銻摻雜量會隨著沉積電壓上升而下降;而最佳的成長電壓介於-0.81V至
-0.83V之間。而由調變pH值參數實驗可知,奈米柱外表形貌於pH:4.52-5.84為佳,摻雜量於pH:4.95-5.46最多,約為Sb:1.5至2.0(at%)。並由上述條件下之成長參數,成長ZnO:Sb奈米柱樣品,製成FET後量測IV curve;由電性轉換特性和電性輸出特性曲線皆顯示,ZnO:Sb奈米柱呈現p-type之特性。最後XPS譜圖分析可知,樣品中的Sb 3d3/2 peak位於539.7 eV,表示了ZnO:Sb奈米柱中的Sb取代了Zn的位置,並與氧產生鍵結。
由上述分析之結果,確定了利用電化學沉積法能夠成功的製作出氧化鋅摻雜銻之奈米柱。
ZnO:Sb nanowires arrays were fabricated using electrochemical solution method. The cyclic voltammetry was performed to determine the suitable deposition potential range. The influences of deposition potential and pH value on the morphology, composition, Conduction characteristics and crystalline quality of ZnO:Sb nanowire were studied. The ZnO:Sb nanowire were measured by Nanowire field emission transistor(NWFET).XPS show that which reason bring about ZnO:Sb nanowires p-type.
The research indicates that (1)the deposition voltage, Above -0.8V, the Sb become metal; below -0.8V, the shape of ZnO NWs can not be ideal hexagonal(2)at the annealing temperature of 500℃, Sb metal can be removed(3)the shape of ZnO NWs is more stable with pH value 4.52-5.84 and high Sb doping content in ZnO NWs with the pH value 4.95-5.46.(4)the Sb Atomic percent in ZnO:Sb nanowires is about 1.5-2.0 percent.
The IV curve of ZnO:Sb nanowire was measured by device of NWFET. the electrical characteristics and transfer characteristics indicate that the NWs has
p-type characteristics and the hole concentration is about 1017cm-3. The XPS spectra show the Sb 3d3/2 peak, indicating that Sb has been doped into the ZnO NWs and that Sb substitute Zn atom.
Electrodeposition is a easy and economic method for fabricating p-type ZnO:Sb NWs.
[1] Lu, J.G., P. Chang, and Z. Fan, Quasi-one-dimensional metal oxide materials-Synthesis, properties and application. Materials Science and Engineering:R, Reports, 52(1-3), p.29-91(2006)
[2] Guoping Wang, Sheng Chu, Ning Zhan, Yuqing Lin, Leonid Chernyak et al. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection. Appl. Phys. Lett. 98, 041107 (2011)
[3] E. Comini, G. Faglia, and G. Sberveglieri, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelt. Appl. Phys. Lett. 81, 1869-1871(2002)
[4] Zhiyong Fan, Dawei Wang, Pai-Chun Chang, Wei-Yu Tseng, and Jia G. Lu. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923 (2004)
[5] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov.
A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)
[6] K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, Nitrogen-induced defect in ZnO:N grown on sapphire substrate by gas source MBE, J. Crystal Growth 209, 526(2000)
[7] Y. Yan, S.B. Zhang, S.T. Pantelides, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO, Phys. Rev. Lett. 86,5723(2001)
[8] Z. G. Yu, P. Wu, H. Gong, Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering, Appl. Phys. Lett. 91 88, 132114 (2006)
[9] D. C. Look, G. M. Renlund and R. H. Burgener Ⅱ, and J. R. Sizelove, As-doped p-type ZnO produced by an evaporation/sputtering process, Appl. Phys. Lett. 85, 5269(2004)
[10] T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, and Y. Hatanaka. p-Type ZnO Layer Formation by Excimer Laser Doping.
phys. stat. sol. (b) 229, No. 2, 911–914 (2002)
[11] FeiWang, Jung-Hun Seo, Dylan Bayerl1, Jian Shi1, Hongyi Mi, Zhenqiang Ma, Deyin Zhao, Yichen Shuai, Weidong Zhou and XudongWang. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection. Appl. Phys. Lett. 98, 041107 (2011)
[12] Sukit Limpijumnong,S. B. Zhang,Su-Huai Wei, and C. H. Park. Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenicor Antimony-Doped p-Type Zinc Oxide. PhysRevLett.92.155504,(2004)
[13] Guoping Wang, Sheng Chu, Ning Zhan, Yuqing Lin, Leonid Chernyak. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection. Appl. Phys. Lett. 98, 041107 (2011)
[14] Yamamoto T., Katayama-Yoshida, Hiroshi, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO, Jpn. J. Appl. Phys. 38, L166-L169(1999)
[15] J. Zhong, S. Muthukumar, Y. Chen, and Y. Lu, Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Appl. Phys. Lett. 83, 3401-3403(2003)
[16] Seung Yong Bae, Chan Woong Na, Ja Hee Kang, and Jeunghee Park, Comparative structure and optical properties of Ga-, In, and Sn-doped ZnO nanowires synthesized via thermal evaporation, J. Phys. Chem. B, 109, 2526–2531( 2005)
[17] FeiWang,Jung-Hun Seo,Dylan Bayerl,Jian Shi1,Hongyi Mi,Zhenqiang Ma,Deyin Zhao,Yichen Shuai,Weidong Zhou and XudongWang.An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Nanotechnology 22 (2011) 225602
[18] Walukiewicz W., Defect formation and diffusion in heavily doped semiconductors, Phys. Rev. B, 50, 5221-5225(1994)
[19] C.G. Van de Walle, D.B. Laks, G.F. Neumaark, S.T. Pantelides, First-principle calculations of solubilities and doping limits: Li, Na, and N in ZnSe, Phys. Rev. B, 47, 9425(1993)
[20] 馬正先、江玉芝、張士成, 韓躍新,納米氧化鋅製備原理與技術, 中國輕工業出版社
[21] 黎佩玲 ,奈米氧化鋅的製備與應用 ,中國紡織工業研究中心,(2003)
[22] Partho Sarkar, Patrick S. Nicholson, Electrophoretic deposition (EPD) :mechanisms, kinetics, and application to ceramics, J. Am. Chem. Soc., 79, 1987 (1996)
[23] 沈正國 ,屏東教育大學 應用物理系光電暨材料所(2011)
[24] 李紹先 ,國立台灣大學 材料科學與工程學所(2006)
[25] D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Thomson Laering, Inc, Singapore, 563 (1998)
[26] http://www.consultrsr.com/index.htm
[27] Sophie Peulon, Daniel Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Advanced Materials, 8, 166–170(1996)
[28] Sophie Peulon and Daniel Lincot, Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions, J. Electrochem. Soc. 145, 3, 864-874 (1998)
[29] T. Pauporte, D. Lincot, J. Electroanalytical Chemistry, 517, 54 (2001)
[30] Masanobu Izaki, Takashi Omi, Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reaction, J. Electrochem. Soc., 144, 1949-1952 (1997)
[31] Masanobu Izaki1, and Takashi Omi, Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. Lett. 68, 2439 (1996)
[32] Qian Li,Kui Cheng a,Wenjian Weng,Piyi Du,Gaorong Han. Synthesis, characterization and electrochemical behavior of Sb-doped ZnO microsphere film. Q. Li, et al., Thin Solid Films (2013), http://dx.doi.org/10.1016/j.tsf.2013.02.077
[33] 高世萍 ,銻摻雜氧化鋅奈米結構的製備與物性研究 ,(2010)