簡易檢索 / 詳目顯示

研究生: 郭俊良
Kuo, Chung-Liang
論文名稱: 利用電化學沉積法製作P型氧化鋅參雜Sb奈米柱之特性研究
Synthesis,Characterization, and Applications of P-type ZnO Nanowires doping with Sb by electrodeposition
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 61
中文關鍵詞: P型氧化鋅電化學奈米柱場效電晶體。
外文關鍵詞: p-type ZnO nanowire, elelctrodeposition, NWFET
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用電化學沉積法(Electrochemical depotion)製作氧化鋅摻雜銻之奈米柱。在實驗初段利用循環伏安法確認沉積電位大致上之範圍,並固定溫度下,探討了沉積電壓與pH值等參數,對奈米柱外表形貌和銻摻雜量之影響,包刮外表形貌、銻摻雜量、晶格結構等,以量化成長氧化鋅摻雜銻之最佳條件;隨後以奈米柱所製作之奈米柱場效元件(Nanowire field emission transistor)量測奈米柱之電性輸出特性與電性轉換特性,以確認利用電化學沉積成功的製作出p型氧化鋅摻雜銻之奈米柱,並最後對ZnO:Sb奈米柱進行XPS分析,確認造成氧化鋅摻雜銻之原因為何。
    研究結果分析可知,由循環伏安法抓出沉積電壓應控制於 -0.9V以下,並由改變電壓參數之實驗,在經由SEM、XRD與EDS分析可知,成長過程中Sb會以金屬態沉積,需經由退火步驟方可消除;而在沉積電壓為 -0.8V時,ZnO:Sb奈米柱能夠形成纖鋅礦結構之六面體;最後經由EDS分析可知,銻摻雜量會隨著沉積電壓上升而下降;而最佳的成長電壓介於-0.81V至
    -0.83V之間。而由調變pH值參數實驗可知,奈米柱外表形貌於pH:4.52-5.84為佳,摻雜量於pH:4.95-5.46最多,約為Sb:1.5至2.0(at%)。並由上述條件下之成長參數,成長ZnO:Sb奈米柱樣品,製成FET後量測IV curve;由電性轉換特性和電性輸出特性曲線皆顯示,ZnO:Sb奈米柱呈現p-type之特性。最後XPS譜圖分析可知,樣品中的Sb 3d3/2 peak位於539.7 eV,表示了ZnO:Sb奈米柱中的Sb取代了Zn的位置,並與氧產生鍵結。
    由上述分析之結果,確定了利用電化學沉積法能夠成功的製作出氧化鋅摻雜銻之奈米柱。

    ZnO:Sb nanowires arrays were fabricated using electrochemical solution method. The cyclic voltammetry was performed to determine the suitable deposition potential range. The influences of deposition potential and pH value on the morphology, composition, Conduction characteristics and crystalline quality of ZnO:Sb nanowire were studied. The ZnO:Sb nanowire were measured by Nanowire field emission transistor(NWFET).XPS show that which reason bring about ZnO:Sb nanowires p-type.
    The research indicates that (1)the deposition voltage, Above -0.8V, the Sb become metal; below -0.8V, the shape of ZnO NWs can not be ideal hexagonal(2)at the annealing temperature of 500℃, Sb metal can be removed(3)the shape of ZnO NWs is more stable with pH value 4.52-5.84 and high Sb doping content in ZnO NWs with the pH value 4.95-5.46.(4)the Sb Atomic percent in ZnO:Sb nanowires is about 1.5-2.0 percent.
    The IV curve of ZnO:Sb nanowire was measured by device of NWFET. the electrical characteristics and transfer characteristics indicate that the NWs has
    p-type characteristics and the hole concentration is about 1017cm-3. The XPS spectra show the Sb 3d3/2 peak, indicating that Sb has been doped into the ZnO NWs and that Sb substitute Zn atom.
    Electrodeposition is a easy and economic method for fabricating p-type ZnO:Sb NWs.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 VIII 表目錄 X 第一章 緒論 1 1-1簡介 1 1-2 文獻回顧 1 1-2.1 氧化鋅p型摻雜 1 1-2.2 p型氧化鋅摻雜銻之相關研究 2 1-2.3 AsZn-2VZn(SbZn-2VZn)理論 2 1-2.4 氧化鋅摻雜銻奈米柱之電性量測 3 1-3 研究動機 6 第二章 相關之基本理論 7 2-1 氧化鋅特性簡介 7 2-1.1 氧化鋅晶體結構 7 2-1.2氧化鋅的缺陷與摻雜 8 2-1.3 奈米氧化鋅的製備方法 9 2-2電化學沉積法(Electrochemical deposition) 11 2-2.1電化學沉積基本原理:電泳沉積 11 2-2.2 電化學系統簡介 12 2-2.3 定電位(potentiostatic)模式與定電流 (galvanostatic) 13 2-2.4 循環伏安法(Cyclic Voltammetry,CV) 14 2-2.5電化學沉積反應機制 15 第三章 實驗儀器介紹與實驗步驟 17 3-1實驗流程 18 3-2製程設備 19 3-2.1離子束濺鍍系統 (Ion beam sputter;IBS) 19 3-2.2 Autolab 恆電位儀 20 3-2.3 恆溫水浴鍋 21 3-2.4 雙束型聚焦離子束(Dual-Beam Focused Ion Beam; DB-FIB) 22 3-3量測儀器 23 3-3.1高解析熱電子型場發射掃描式電子顯微鏡 (FE-SEM7000F) 23 3-3.2 多功能X光薄膜繞射儀 (X-Ray Thin-Film Diffractometer) 24 3-3.3 X光光電子能譜(X-ray Photoelectron Spectroscopy,XPS) 25 3-3.4 高解析場發射掃描穿透式電子顯微鏡 26 3-3.5 Keithley 2400 電源電錶 27 3-4 實驗步驟 27 3-4.1電化學成長ZnO:Sb原理 27 3-4.2 試片準備 29 3-4.3 配置反應溶液 30 3-4.4架設電化學儀器與實驗過程 31 3-4.5 製作奈米柱場效元件(NW FET) 32 第四章 實驗結果與討論 34 4-1 循環伏安法分析 34 4-2 樣品大氣退火過程、EDS、XRD與SEM分析 35 4-3 調變沉積電位對奈米柱結構、外表形貌以及銻含量之影響 39 4-4 調變pH對奈米柱形貌以及銻含量之影響 46 4-6 TEM mapping量測之結果 50 4-5 奈米柱電性量測結果 51 4-5.1 奈米柱電性輸出特性 52 4-5.2 奈米柱電性轉換特性 53 4-5.3 奈米柱載子濃度 54 4-6 氧化鋅奈米柱銻摻雜之XPS分析結果 55 第五章 結論 56 參考文獻 58 圖目錄 圖1-1不同能量密度之電阻率量測 4 圖1-2 不同缺陷之費米能階所對應之形成能 4 圖1-3 氧化鋅p-n結構示意圖 5 圖1-4 單根奈米柱電性轉換特性與電性輸出特性 5 圖2-1氧化鋅的晶體結構(a) Rocksalt結構(b) Zinc-blende結構 7 圖2-2 氧化鋅結構示意圖 8 圖2-3 氧化鋅中點缺陷對應的缺陷能級位置 9 圖2-4電化學沉積步驟示意圖 12 圖2-5 線性循環伏安法電位與時間之關係 14 圖2-6 標準的循環伏安圖 15 圖3-1 IBS系統俯視示意圖 19 圖3-2 Autolab PGSTAT 302N,302N 20 圖3-3恆溫水浴鍋 21 圖3-4 氧化鋅成長示意圖 21 圖3-5 利用Focused Ion Beam於奈米柱兩側沉積電極(Pt) 22 圖3-6 SEM示意圖 23 圖3-7 XRD繞射原理 24 圖3-8 XRD繞射示意圖 24 圖3-9 TEM之結構圖 26 圖3-10 Keithley 2400 27 圖3-11試片與Holder架設圖 29 圖3-12電極與基板的架設如圖 31 圖3-13奈米柱場效元件(NWFET)機板製作示意 32 圖3-14奈米柱場效元件(NWFET)製作完成之示意圖 33 圖4-1循環伏安法掃描圖 34 圖4-2 不同溫度下奈米柱退火(a)無退火(b)400℃(c)450(d)500℃(e)550℃ (f)600℃(g)800℃ 36 圖4-6不同沉積電位ZnO:Sb奈米柱SEM圖(a)-0.7V(b)-0.75V (c)-0.775V (d)-0.785V(e)-0.795V(f)-0.8V(g)-0.82V(h)-0.85V(i)-0.9V (j)-0.95V 41 圖4-7調變沉積電位所製備樣品之XRD圖 42 圖4-8相同樣品(-0.8V、-0.83V、-0.85V、-0.9V)經過無退火與大氣下 500℃、7分30秒熱退火處理過後之XRD圖 43 圖4-9 不同沉積電壓下之EDS分析銻元素之含量趨勢圖 45 圖4-10(a)pH=4.02(b)pH=4.28(c)pH=4.52(d)pH=4.8 (e)pH=4.95(f)pH=5.17(g)pH=5.46(h)pH=5.61(i)pH=5.84 (j)pH=6.04(k)pH=6.2(l) pH =6.38 (m) pH =6.55 48 圖4-11不同pH值EDS分析銻元素含量圖 49 圖4-12 TEM mapping(a)ZnO SEM (b) mapping Zn (c) mapping O(d) mapping Zn 50 圖4-13元件成品示意圖與量測過程SEM圖 51 圖4-14氧化鋅奈米柱摻雜銻之電性輸出特性曲線(a)-15V(b)-10V (c)-5V(d)0V(e)5V(f)10V 52 圖4-16奈米柱校正之XPS分析圖 55 表目錄 表2-1 奈米氧化鋅製備方法 11 表2-2常見之參考電極及電位 13 表4-1變化退火時間對Sb含量之EDS分析。 36 表4-2 不同沉積電壓下EDS分析銻元素之含量表 44 表4-3 不同pH值EDS分析銻元素之含量表 49

    [1] Lu, J.G., P. Chang, and Z. Fan, Quasi-one-dimensional metal oxide materials-Synthesis, properties and application. Materials Science and Engineering:R, Reports, 52(1-3), p.29-91(2006)
    [2] Guoping Wang, Sheng Chu, Ning Zhan, Yuqing Lin, Leonid Chernyak et al. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection. Appl. Phys. Lett. 98, 041107 (2011)
    [3] E. Comini, G. Faglia, and G. Sberveglieri, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelt. Appl. Phys. Lett. 81, 1869-1871(2002)
    [4] Zhiyong Fan, Dawei Wang, Pai-Chun Chang, Wei-Yu Tseng, and Jia G. Lu. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85, 5923 (2004)
    [5] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov.
    A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)
    [6] K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, Nitrogen-induced defect in ZnO:N grown on sapphire substrate by gas source MBE, J. Crystal Growth 209, 526(2000)
    [7] Y. Yan, S.B. Zhang, S.T. Pantelides, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO, Phys. Rev. Lett. 86,5723(2001)
    [8] Z. G. Yu, P. Wu, H. Gong, Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering, Appl. Phys. Lett. 91 88, 132114 (2006)
    [9] D. C. Look, G. M. Renlund and R. H. Burgener Ⅱ, and J. R. Sizelove, As-doped p-type ZnO produced by an evaporation/sputtering process, Appl. Phys. Lett. 85, 5269(2004)
    [10] T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, and Y. Hatanaka. p-Type ZnO Layer Formation by Excimer Laser Doping.
    phys. stat. sol. (b) 229, No. 2, 911–914 (2002)
    [11] FeiWang, Jung-Hun Seo, Dylan Bayerl1, Jian Shi1, Hongyi Mi, Zhenqiang Ma, Deyin Zhao, Yichen Shuai, Weidong Zhou and XudongWang. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection. Appl. Phys. Lett. 98, 041107 (2011)
    [12] Sukit Limpijumnong,S. B. Zhang,Su-Huai Wei, and C. H. Park. Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenicor Antimony-Doped p-Type Zinc Oxide. PhysRevLett.92.155504,(2004)
    [13] Guoping Wang, Sheng Chu, Ning Zhan, Yuqing Lin, Leonid Chernyak. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection. Appl. Phys. Lett. 98, 041107 (2011)
    [14] Yamamoto T., Katayama-Yoshida, Hiroshi, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO, Jpn. J. Appl. Phys. 38, L166-L169(1999)
    [15] J. Zhong, S. Muthukumar, Y. Chen, and Y. Lu, Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Appl. Phys. Lett. 83, 3401-3403(2003)
    [16] Seung Yong Bae, Chan Woong Na, Ja Hee Kang, and Jeunghee Park, Comparative structure and optical properties of Ga-, In, and Sn-doped ZnO nanowires synthesized via thermal evaporation, J. Phys. Chem. B, 109, 2526–2531( 2005)
    [17] FeiWang,Jung-Hun Seo,Dylan Bayerl,Jian Shi1,Hongyi Mi,Zhenqiang Ma,Deyin Zhao,Yichen Shuai,Weidong Zhou and XudongWang.An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Nanotechnology 22 (2011) 225602
    [18] Walukiewicz W., Defect formation and diffusion in heavily doped semiconductors, Phys. Rev. B, 50, 5221-5225(1994)
    [19] C.G. Van de Walle, D.B. Laks, G.F. Neumaark, S.T. Pantelides, First-principle calculations of solubilities and doping limits: Li, Na, and N in ZnSe, Phys. Rev. B, 47, 9425(1993)
    [20] 馬正先、江玉芝、張士成, 韓躍新,納米氧化鋅製備原理與技術, 中國輕工業出版社
    [21] 黎佩玲 ,奈米氧化鋅的製備與應用 ,中國紡織工業研究中心,(2003)
    [22] Partho Sarkar, Patrick S. Nicholson, Electrophoretic deposition (EPD) :mechanisms, kinetics, and application to ceramics, J. Am. Chem. Soc., 79, 1987 (1996)
    [23] 沈正國 ,屏東教育大學 應用物理系光電暨材料所(2011)
    [24] 李紹先 ,國立台灣大學 材料科學與工程學所(2006)
    [25] D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Thomson Laering, Inc, Singapore, 563 (1998)
    [26] http://www.consultrsr.com/index.htm
    [27] Sophie Peulon, Daniel Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Advanced Materials, 8, 166–170(1996)
    [28] Sophie Peulon and Daniel Lincot, Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions, J. Electrochem. Soc. 145, 3, 864-874 (1998)
    [29] T. Pauporte, D. Lincot, J. Electroanalytical Chemistry, 517, 54 (2001)
    [30] Masanobu Izaki, Takashi Omi, Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reaction, J. Electrochem. Soc., 144, 1949-1952 (1997)
    [31] Masanobu Izaki1, and Takashi Omi, Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. Lett. 68, 2439 (1996)
    [32] Qian Li,Kui Cheng a,Wenjian Weng,Piyi Du,Gaorong Han. Synthesis, characterization and electrochemical behavior of Sb-doped ZnO microsphere film. Q. Li, et al., Thin Solid Films (2013), http://dx.doi.org/10.1016/j.tsf.2013.02.077
    [33] 高世萍 ,銻摻雜氧化鋅奈米結構的製備與物性研究 ,(2010)

    下載圖示 校內:2018-09-11公開
    校外:2018-09-11公開
    QR CODE