| 研究生: |
許凱嵐 Hsu, Kai-Lan |
|---|---|
| 論文名稱: |
喙突移位術(Latarjet 手術)中不同鏍絲固定方式之生物力學比較 - 大體肩關節力學研究 Biomechanical Comparison Among Various Screw Fixation Method for Latarjet Procedure –A Cadaveric Biomechanical Study |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | Latarjet 手術 、生物力學 、喙突 、肩盂 |
| 外文關鍵詞: | Latarjet procedure, α angle, biomechanical, coracoid process, glenoid |
| 相關次數: | 點閱:54 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肩關節前向的不穩定,是肩關節疾患中常見的診斷,而肩盂的骨頭缺損則是在處理肩關節前向不穩定時常會面臨到的一個困難。喙突移位術(Latarjet 手術)主要用於因肩盂之骨頭缺損所造成的肩關節不穩定,此手術可以開放式手術或以關節鏡行之。此手術主要是將喙突(Coracoid process)的平行部分切除下來,連同附著的肌腱一起轉移到肩盂(Glenoid)的前緣,並以兩支螺絲固定。此手術的高成功率來自於三個不同的影響:1、附著於喙突上的聯合肌腱在轉位後,可以限制肩胛下肌(Subscapularis muscle)在外展及外旋時的活動;2、移植過來的喙突可以增加肩盂的關節接觸面;3、手術同時也會將關節囊修復。
在 Latarjet 手術中,移植骨的位置及兩支螺絲的方向是決定關節穩定度及長期併發症之決定性因子。有些醫師認為,術中的螺絲必須和肩盂的關節面完全平行,才能夠減少移植的喙突向外突出於關節面(overhang),同時也能減少脊上神經(suprascapular nerve)受傷的風險。然而,因為喙突的內緣有許多神經血管結構,且肩盂的關節面與人體的胸腔呈現傾斜的角度,因此要將螺絲固定平行於關節面在手術技巧上有一定的困難。即使是過去的文獻,螺絲與關節面的角度(即 α angle)大多都在 0 度到 40 度之間,而平均值大約在 10 到 20 度左右。
因此,本研究的目的,是希望進行一個生物力學實驗,比較在 Latarjet 手術中,不同的螺絲方向(0 度、15 度及 30 度),是否會影響移植骨固定的穩定度以及承受破壞的強度。本研究假設在使用肩部大體來進行 Latarjet 手術時,將移植的喙突固定在稍大的 α angle 下,仍能夠和固定於較小的 α angle 時,有同樣的穩定性及破壞強度。
本研究結果發現,在使用肩部大體來進行 Latarjet 手術時,α angle 越大,其肩盂和移植骨之間的位移有逐漸增加之趨勢。且將螺絲固定在與關節面呈 30 度時,較固定在與關節面平行之狀況下,其肩盂和移植骨之間的位移,會達到統計上的顯著差異。除此之外,所有的檢體遭受破壞的原因均是螺絲切穿肩盂的切面,且破壞的荷重在三組間並沒有顯著的差異。
根據本研究的結果可以得到結論如下:在 Latarjet 手術中,雖然螺絲與關節面的交角等於 15 度時,並不影響生物力學上的穩定度,術者仍應盡可能將螺絲固定於和關節面平行之方向。但術者應避免螺絲與關節面的交角達到 30 度。
Shoulder instability is one of the commonly diagnosed and treated shoulder disorders, and glenoid bone loss is a common finding in patients with an anterior
shoulder instability. The Latarjet procedure is a surgical technique to treat recurrent
shoulder instability with significant glenoid bone loss and it can be performed either arthroscopically or open. This procedure involves osteotomy of the coracoid process, then transferred distally and secured to the glenoid bony defect with 2 screws. The procedure has a high success rate, and this is due to the ‘triple effect’ including 1) the conjoint tendon reinforces the inferior subscapularis and restricts the shoulder joint from abduction and external rotation; 2) increase and restore the contact surface area; 3) concomitant repair of the joint capsule.
When performing the Latarjet procedure, accurate screw direction is the key to
provide stability and prevent complications. Some surgeons statement that the screw must be completely parallel to the glenoid surface to reduce the risk of suprascapular nerve injury and graft overhang laterally. However, placement the screws parallel to the glenoid surface is techniqually challenged because of the nearby neurovascular structure and the obliquity of the scapula on the thorax. The reported angle between screw and glenoid surface (α angle) ranged from 0 to 40 degrees and with average around 10 to 20 degrees in previous literature.
The aim of this study was to examine and compare the biomechanical property
between different screw fixation angle (0, 15 and 30 degrees) for Latarjet procedure in cadaver specimen. It was hypothesized that placement of the screws with slightly larger α angle would obtain similar fixation stability and failure strength than that with small α angle in human cadaver specimens while performing Lartajet procedure.
The results of presented study revealed that there was a trend of increased displacement when increased α angle. A significant larger glenoid-graft interface displacement was noted when placing the screws with 30 degrees α angle compared with placing the screws with 0 degrees α angle. The ultimate failure load was similar when placing the screws with 0, 15 and 30 degrees, and all specimens failed through screw cutout from the glenoid.
The conclusion suggested that when performing the Latarjet procedure, surgeons
should try to apply the screws as parallel as possible to the glenoid articular surface. Mild deviation, that α angle less than 15 degree, may not reduce the fixation stability, but excessive cases of more than 30 degrees α angle should be avoid.
1. McCausland, C., E. Sawyer, B.J. Eovaldi, and M. Varacallo, Anatomy, Shoulder and Upper Limb, Shoulder Muscles, in StatPearls. 2020: Treasure Island (FL).
2. Cuellar, R., M.A. Ruiz-Iban, and A. Cuellar, Anatomy and Biomechanics of the Unstable Shoulder. Open Orthop J, 2017. 11: p. 919-933.
3. Owens, B.D., L. Dawson, R. Burks, and K.L. Cameron, Incidence of shoulder dislocation in the United States military: demographic considerations from a high-risk population. J Bone Joint Surg Am, 2009. 91(4): p. 791-6.
4. Waterman, B., B.D. Owens, and J.M. Tokish, Anterior Shoulder Instability in the Military Athlete. Sports Health, 2016. 8(6): p. 514-519.
5. Wilk, K.E., C.A. Arrigo, and J.R. Andrews, Current concepts: the stabilizing structures of the glenohumeral joint. J Orthop Sports Phys Ther, 1997. 25(6): p. 364-79.
6. Zumstein, V., M. Kraljevic, A. Conzen, S. Hoechel, and M. Muller-Gerbl, Thickness distribution of the glenohumeral joint cartilage: a quantitative study using computed tomography. Surg Radiol Anat, 2014. 36(4): p. 327-31.
7. Angibaud, L., J.D. Zuckerman, P.H. Flurin, C. Roche, and T. Wright, Reconstructing proximal humeral fractures using the bicipital groove as a landmark. Clin Orthop Relat Res, 2007. 458: p. 168-74.
8. Itamura, J., T. Dietrick, N. Roidis, C. Shean, F. Chen, and J. Tibone, Analysis of the bicipital groove as a landmark for humeral head replacement. J Shoulder Elbow Surg, 2002. 11(4): p. 322-6.
9. Robertson, D.D., J. Yuan, L.U. Bigliani, E.L. Flatow, and K. Yamaguchi, Three-dimensional analysis of the proximal part of the humerus: relevance to arthroplasty. J Bone Joint Surg Am, 2000. 82(11): p. 1594-602.
10. Kwon, Y.W., K.A. Powell, J.K. Yum, J.J. Brems, and J.P. Iannotti, Use of three-dimensional computed tomography for the analysis of the glenoid anatomy. J Shoulder Elbow Surg, 2005. 14(1): p. 85-90.
11. Matsen, F.A., 3rd, C. Chebli, S. Lippitt, and S. American Academy of Orthopaedic, Principles for the evaluation and management of shoulder instability. J Bone Joint Surg Am, 2006. 88(3): p. 648-59.
12. Lippitt, S. and F. Matsen, Mechanisms of glenohumeral joint stability. Clin Orthop Relat Res, 1993(291): p. 20-8.
13. Burkart, A.C. and R.E. Debski, Anatomy and function of the glenohumeral ligaments in anterior shoulder instability. Clin Orthop Relat Res, 2002(400): p. 32-9.
14. Itoigawa, Y. and E. Itoi, Anatomy of the capsulolabral complex and rotator interval related to glenohumeral instability. Knee Surg Sports Traumatol Arthrosc, 2016. 24(2): p. 343-9.
15. Warner, J.J., X.H. Deng, R.F. Warren, and P.A. Torzilli, Static capsuloligamentous restraints to superior-inferior translation of the glenohumeral joint. Am J Sports Med, 1992. 20(6): p. 675-85.
16. Ticker, J.B., E.L. Flatow, R.J. Pawluk, L.J. Soslowsky, A. Ratcliffe, S.P. Arnoczky, V.C. Mow, and L.U. Bigliani, The inferior glenohumeral ligament: a correlative investigation. J Shoulder Elbow Surg, 2006. 15(6): p. 665-74.
17. Hurschler, C., N. Wulker, and M. Mendila, The effect of negative intraarticular pressure and rotator cuff force on glenohumeral translation during simulated active elevation. Clin Biomech (Bristol, Avon), 2000. 15(5): p. 306-14.
18. Habermeyer, P., U. Schuller, and E. Wiedemann, The intra-articular pressure of the shoulder: an experimental study on the role of the glenoid labrum in stabilizing the joint. Arthroscopy, 1992. 8(2): p. 166-72.
19. Day, A., N.F. Taylor, and R.A. Green, The stabilizing role of the rotator cuff at the shoulder--responses to external perturbations. Clin Biomech (Bristol, Avon), 2012. 27(6): p. 551-6.
20. Harryman, D.T., 2nd, J.A. Sidles, J.M. Clark, K.J. McQuade, T.D. Gibb, and F.A. Matsen, 3rd, Translation of the humeral head on the glenoid with passive glenohumeral motion. J Bone Joint Surg Am, 1990. 72(9): p. 1334-43.
21. Hess, S.A., Functional stability of the glenohumeral joint. Man Ther, 2000. 5(2): p. 63-71.
22. Magarey, M.E. and M.A. Jones, Dynamic evaluation and early management of altered motor control around the shoulder complex. Man Ther, 2003. 8(4): p. 195-206.
23. Thompson, W.O., R.E. Debski, N.D. Boardman, 3rd, E. Taskiran, J.J. Warner, F.H. Fu, and S.L. Woo, A biomechanical analysis of rotator cuff deficiency in a cadaveric model. Am J Sports Med, 1996. 24(3): p. 286-92.
24. Itoi, E., N.E. Motzkin, B.F. Morrey, and K.N. An, Stabilizing function of the long head of the biceps in the hanging arm position. J Shoulder Elbow Surg, 1994. 3(3): p. 135-42.
25. Kumar, V.P., K. Satku, and P. Balasubramaniam, The role of the long head of biceps brachii in the stabilization of the head of the humerus. Clin Orthop Relat Res, 1989(244): p. 172-5.
26. Tuoheti, Y., E. Itoi, H. Minagawa, N. Yamamoto, H. Saito, N. Seki, K. Okada, Y. Shimada, and H. Abe, Attachment types of the long head of the biceps tendon to the glenoid labrum and their relationships with the glenohumeral ligaments. Arthroscopy, 2005. 21(10): p. 1242-9.
27. Youm, T., N.S. ElAttrache, J.E. Tibone, M.H. McGarry, and T.Q. Lee, The effect of the long head of the biceps on glenohumeral kinematics. J Shoulder Elbow Surg, 2009. 18(1): p. 122-9.
28. Kibler, W.B., P.M. Ludewig, P.W. McClure, L.A. Michener, K. Bak, and A.D. Sciascia, Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the 'Scapular Summit'. Br J Sports Med, 2013. 47(14): p. 877-85.
29. Inman, V.T., J.B. Saunders, and L.C. Abbott, Observations of the function of the shoulder joint. 1944. Clin Orthop Relat Res, 1996(330): p. 3-12.
30. McClure, P.W., L.A. Michener, B.J. Sennett, and A.R. Karduna, Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg, 2001. 10(3): p. 269-77.
31. Hayes, K., M. Callanan, J. Walton, A. Paxinos, and G.A. Murrell, Shoulder instability: management and rehabilitation. J Orthop Sports Phys Ther, 2002. 32(10): p. 497-509.
32. Zacchilli, M.A. and B.D. Owens, Epidemiology of shoulder dislocations presenting to emergency departments in the United States. J Bone Joint Surg Am, 2010. 92(3): p. 542-9.
33. Kroner, K., T. Lind, and J. Jensen, The epidemiology of shoulder dislocations. Arch Orthop Trauma Surg, 1989. 108(5): p. 288-90.
34. Liu, S.H. and M.H. Henry, Anterior shoulder instability. Current review. Clin Orthop Relat Res, 1996(323): p. 327-37.
35. Rowe, C.R., Prognosis in dislocations of the shoulder. J Bone Joint Surg Am, 1956. 38-A(5): p. 957-77.
36. Sheehan, S.E., G. Gaviola, R. Gordon, A. Sacks, L.L. Shi, and S.E. Smith, Traumatic shoulder injuries: a force mechanism analysis-glenohumeral dislocation and instability. AJR Am J Roentgenol, 2013. 201(2): p. 378-93.
37. Bankart, A.S., Recurrent or Habitual Dislocation of the Shoulder-Joint. Br Med J, 1923. 2(3285): p. 1132-3.
38. Speer, K.P., X. Deng, S. Borrero, P.A. Torzilli, D.A. Altchek, and R.F. Warren, Biomechanical evaluation of a simulated Bankart lesion. J Bone Joint Surg Am, 1994. 76(12): p. 1819-26.
39. Howell, S.M., B.J. Galinat, A.J. Renzi, and P.J. Marone, Normal and abnormal mechanics of the glenohumeral joint in the horizontal plane. J Bone Joint Surg Am, 1988. 70(2): p. 227-32.
40. Chen, A.L., S.A. Hunt, R.J. Hawkins, and J.D. Zuckerman, Management of bone loss associated with recurrent anterior glenohumeral instability. Am J Sports Med, 2005. 33(6): p. 912-25.
41. Griffith, J.F., G.E. Antonio, P.S. Yung, E.M. Wong, A.B. Yu, A.T. Ahuja, and K.M. Chan, Prevalence, pattern, and spectrum of glenoid bone loss in anterior shoulder dislocation: CT analysis of 218 patients. AJR Am J Roentgenol, 2008. 190(5): p. 1247-54.
42. Rowe, C.R., B. Zarins, and J.V. Ciullo, Recurrent anterior dislocation of the shoulder after surgical repair. Apparent causes of failure and treatment. J Bone Joint Surg Am, 1984. 66(2): p. 159-68.
43. Widjaja, A.B., A. Tran, M. Bailey, and S. Proper, Correlation between Bankart and Hill-Sachs lesions in anterior shoulder dislocation. ANZ J Surg, 2006. 76(6): p. 436-8.
44. Fox, J.A., A. Sanchez, T.J. Zajac, and M.T. Provencher, Understanding the Hill-Sachs Lesion in Its Role in Patients with Recurrent Anterior Shoulder Instability. Curr Rev Musculoskelet Med, 2017. 10(4): p. 469-479.
45. Horst, K., R. Von Harten, C. Weber, H. Andruszkow, R. Pfeifer, T. Dienstknecht, and H.C. Pape, Assessment of coincidence and defect sizes in Bankart and Hill-Sachs lesions after anterior shoulder dislocation: a radiological study. Br J Radiol, 2014. 87(1034): p. 20130673.
46. Neviaser, R.J., T.J. Neviaser, and J.S. Neviaser, Concurrent rupture of the rotator cuff and anterior dislocation of the shoulder in the older patient. J Bone Joint Surg Am, 1988. 70(9): p. 1308-11.
47. Itoi, E., S.B. Lee, L.J. Berglund, L.L. Berge, and K.N. An, The effect of a glenoid defect on anteroinferior stability of the shoulder after Bankart repair: a cadaveric study. J Bone Joint Surg Am, 2000. 82(1): p. 35-46.
48. Yamamoto, N., E. Itoi, H. Abe, K. Kikuchi, N. Seki, H. Minagawa, and Y. Tuoheti, Effect of an anterior glenoid defect on anterior shoulder stability: a cadaveric study. Am J Sports Med, 2009. 37(5): p. 949-54.
49. Yamamoto, N., T. Muraki, J.W. Sperling, S.P. Steinmann, R.H. Cofield, E. Itoi, and K.N. An, Stabilizing mechanism in bone-grafting of a large glenoid defect. J Bone Joint Surg Am, 2010. 92(11): p. 2059-66.
50. Bakshi, N.K., G.A. Cibulas, J.K. Sekiya, and A. Bedi, A Clinical Comparison of Linear- and Surface Area-Based Methods of Measuring Glenoid Bone Loss. Am J Sports Med, 2018. 46(10): p. 2472-2477.
51. Bigliani, L.U., P.M. Newton, S.P. Steinmann, P.M. Connor, and S.J. McLlveen, Glenoid rim lesions associated with recurrent anterior dislocation of the shoulder. Am J Sports Med, 1998. 26(1): p. 41-5.
52. Mologne, T.S., M.T. Provencher, K.A. Menzel, T.A. Vachon, and C.B. Dewing, Arthroscopic stabilization in patients with an inverted pear glenoid: results in patients with bone loss of the anterior glenoid. Am J Sports Med, 2007. 35(8): p. 1276-83.
53. Saito, H., E. Itoi, H. Sugaya, H. Minagawa, N. Yamamoto, and Y. Tuoheti, Location of the glenoid defect in shoulders with recurrent anterior dislocation. Am J Sports Med, 2005. 33(6): p. 889-93.
54. Latarjet, M., [Treatment of recurrent dislocation of the shoulder]. Lyon Chir, 1954. 49(8): p. 994-7.
55. Helfet, A.J., Coracoid transplantation for recurring dislocation of the shoulder. J Bone Joint Surg Br, 1958. 40-B(2): p. 198-202.
56. Yamamoto, N., T. Muraki, K.N. An, J.W. Sperling, R.H. Cofield, E. Itoi, G. Walch, and S.P. Steinmann, The stabilizing mechanism of the Latarjet procedure: a cadaveric study. J Bone Joint Surg Am, 2013. 95(15): p. 1390-7.
57. Moon, S.C., N.S. Cho, and Y.G. Rhee, Quantitative assessment of the latarjet procedure for large glenoid defects by computed tomography: a coracoid graft can sufficiently restore the glenoid arc. Am J Sports Med, 2015. 43(5): p. 1099-107.
58. Burkhart, S.S., J.F. De Beer, J.R. Barth, T. Cresswell, C. Roberts, and D.P. Richards, Results of modified Latarjet reconstruction in patients with anteroinferior instability and significant bone loss. Arthroscopy, 2007. 23(10): p. 1033-41.
59. Rabinowitz, J., R. Friedman, and J.K. Eichinger, Management of Glenoid Bone Loss with Anterior Shoulder Instability: Indications and Outcomes. Curr Rev Musculoskelet Med, 2017. 10(4): p. 452-462.
60. An, V.V., B.S. Sivakumar, K. Phan, and J. Trantalis, A systematic review and meta-analysis of clinical and patient-reported outcomes following two procedures for recurrent traumatic anterior instability of the shoulder: Latarjet procedure vs. Bankart repair. J Shoulder Elbow Surg, 2016. 25(5): p. 853-63.
61. Moroder, P., E. Schulz, G. Wierer, A. Auffarth, P. Habermeyer, H. Resch, and M. Tauber, Neer Award 2019: Latarjet procedure vs. iliac crest bone graft transfer for treatment of anterior shoulder instability with glenoid bone loss: a prospective randomized trial. J Shoulder Elbow Surg, 2019. 28(7): p. 1298-1307.
62. Ernstbrunner, L., F. Plachel, P. Heuberer, L. Pauzenberger, P. Moroder, H. Resch, and W. Anderl, Arthroscopic Versus Open Iliac Crest Bone Grafting in Recurrent Anterior Shoulder Instability With Glenoid Bone Loss: A Computed Tomography-Based Quantitative Assessment. Arthroscopy, 2018. 34(2): p. 352-359.
63. Xiang, M., J. Yang, H. Chen, X. Hu, Q. Zhang, Y. Li, and C. Jiang, Arthroscopic Autologous Scapular Spine Bone Graft Combined With Bankart Repair for Anterior Shoulder Instability With Subcritical (10%-15%) Glenoid Bone Loss. Arthroscopy, 2021. 37(7): p. 2065-2074.
64. Petersen, S.A., J.A. Bernard, E.R. Langdale, and S.M. Belkoff, Autologous distal clavicle versus autologous coracoid bone grafts for restoration of anterior-inferior glenoid bone loss: a biomechanical comparison. J Shoulder Elbow Surg, 2016. 25(6): p. 960-6.
65. Tokish, J.M., K. Fitzpatrick, J.B. Cook, and W.J. Mallon, Arthroscopic distal clavicular autograft for treating shoulder instability with glenoid bone loss. Arthrosc Tech, 2014. 3(4): p. e475-81.
66. Provencher, M.T., N. Ghodadra, L. LeClere, D.J. Solomon, and A.A. Romeo, Anatomic osteochondral glenoid reconstruction for recurrent glenohumeral instability with glenoid deficiency using a distal tibia allograft. Arthroscopy, 2009. 25(4): p. 446-52.
67. Ravipati, A.P.T., M.I. Ali, and I.H. Wong, Arthroscopic Anatomic Glenoid Reconstruction in the Setting of a Failed Latarjet Using Distal Tibial Allograft. Arthrosc Tech, 2020. 9(1): p. e177-e184.
68. Allain, J., D. Goutallier, and C. Glorion, Long-term results of the Latarjet procedure for the treatment of anterior instability of the shoulder. J Bone Joint Surg Am, 1998. 80(6): p. 841-52.
69. Mizuno, N., P.J. Denard, P. Raiss, B. Melis, and G. Walch, Long-term results of the Latarjet procedure for anterior instability of the shoulder. J Shoulder Elbow Surg, 2014. 23(11): p. 1691-9.
70. Weppe, F., R.A. Magnussen, S. Lustig, G. Demey, P. Neyret, and E. Servien, A biomechanical evaluation of bicortical metal screw fixation versus absorbable interference screw fixation after coracoid transfer for anterior shoulder instability. Arthroscopy, 2011. 27(10): p. 1358-63.
71. Ladermann, A., P.J. Denard, and S.S. Burkhart, Injury of the suprascapular nerve during latarjet procedure: an anatomic study. Arthroscopy, 2012. 28(3): p. 316-21.
72. Schmid, S.L., M. Farshad, S. Catanzaro, and C. Gerber, The Latarjet procedure for the treatment of recurrence of anterior instability of the shoulder after operative repair: a retrospective case series of forty-nine consecutive patients. J Bone Joint Surg Am, 2012. 94(11): p. e75.
73. Young, A.A., R. Maia, J. Berhouet, and G. Walch, Open Latarjet procedure for management of bone loss in anterior instability of the glenohumeral joint. J Shoulder Elbow Surg, 2011. 20(2 Suppl): p. S61-9.
74. Joshi, M.A., A.A. Young, J.C. Balestro, and G. Walch, The Latarjet-Patte procedure for recurrent anterior shoulder instability in contact athletes. Orthop Clin North Am, 2015. 46(1): p. 105-11.
75. Joshi, M.A., A.A. Young, J.C. Balestro, and G. Walch, The Latarjet-Patte procedure for recurrent anterior shoulder instability in contact athletes. Clin Sports Med, 2013. 32(4): p. 731-9.
76. Barth, J., A. Boutsiadis, L. Neyton, L. Lafosse, and G. Walch, Can a Drill Guide Improve the Coracoid Graft Placement During the Latarjet Procedure? A Prospective Comparative Study With the Freehand Technique. Orthop J Sports Med, 2017. 5(10): p. 2325967117734218.
77. Boileau, P., C.E. Thelu, N. Mercier, X. Ohl, R. Houghton-Clemmey, M. Carles, and C. Trojani, Arthroscopic Bristow-Latarjet combined with bankart repair restores shoulder stability in patients with glenoid bone loss. Clin Orthop Relat Res, 2014. 472(8): p. 2413-24.
78. Meyer, D.C., B.K. Moor, C. Gerber, and E.T. Ek, Accurate coracoid graft placement through use of a drill guide for the Latarjet procedure. J Shoulder Elbow Surg, 2013. 22(5): p. 701-8.
79. Shah, A.A., R.B. Butler, J. Romanowski, D. Goel, D. Karadagli, and J.J. Warner, Short-term complications of the Latarjet procedure. J Bone Joint Surg Am, 2012. 94(6): p. 495-501.
80. Clavert, P., J.C. Lutz, R. Wolfram-Gabel, J.F. Kempf, and J.L. Kahn, Relationships of the musculocutaneous nerve and the coracobrachialis during coracoid abutment procedure (Latarjet procedure). Surg Radiol Anat, 2009. 31(1): p. 49-53.
81. Castropil, W., B. Schor, A. Bitar, G. Medina, L.H. Ribas, and C. Mendes, Arthroscopic Latarjet: Technique Description and Preliminary Results. Study of the First 30 Cases. Rev Bras Ortop (Sao Paulo), 2020. 55(2): p. 208-214.
82. Moga, I., G. Konstantinidis, and I.H. Wong, The Safety of a Far Medial Arthroscopic Portal for Anatomic Glenoid Reconstruction: A Cadaveric Study. Orthop J Sports Med, 2018. 6(9): p. 2325967118795404.
83. Hawi, N., A. Reinhold, E.M. Suero, E. Liodakis, S. Przyklenk, J. Brandes, A. Schmiedl, C. Krettek, and R. Meller, The Anatomic Basis for the Arthroscopic Latarjet Procedure: A Cadaveric Study. Am J Sports Med, 2016. 44(2): p. 497-503.
84. Vagstad, T., P.J. Klungsoyr, J.O. Drogset, D. Nebel, M. Ferle, C. Hurschler, and J.A. Klungsoyr, The novel arthroscopic subscapular sling procedure grants better stability than an arthroscopic Bankart repair in a cadaveric study. Knee Surg Sports Traumatol Arthrosc, 2020. 28(7): p. 2316-2324.
85. Valenti, P., C. Maroun, E. Wagner, and J.D. Werthel, Arthroscopic Latarjet Procedure Combined With Bankart Repair: A Technique Using 2 Cortical Buttons and Specific Glenoid and Coracoid Guides. Arthrosc Tech, 2018. 7(4): p. e313-e320.
86. Casabianca, L., A. Gerometta, A. Massein, F. Khiami, R. Rousseau, A. Hardy, H. Pascal-Moussellard, and P. Loriaut, Graft position and fusion rate following arthroscopic Latarjet. Knee Surg Sports Traumatol Arthrosc, 2016. 24(2): p. 507-12.
87. Bochniewicz, E.M., G. Emmer, A. McLeod, J. Barth, A.W. Dromerick, and P. Lum, Measuring Functional Arm Movement after Stroke Using a Single Wrist-Worn Sensor and Machine Learning. J Stroke Cerebrovasc Dis, 2017. 26(12): p. 2880-2887.
88. Kordasiewicz, B., K. Malachowski, M. Kicinski, S. Chaberek, A. Boszczyk, D. Marczak, and S. Pomianowski, Intraoperative graft-related complications are a risk factor for recurrence in arthroscopic Latarjet stabilisation. Knee Surg Sports Traumatol Arthrosc, 2019. 27(10): p. 3230-3239.
89. Ali, J., B. Altintas, A. Pulatkan, R.E. Boykin, D.O. Aksoy, and K. Bilsel, Open Versus Arthroscopic Latarjet Procedure for the Treatment of Chronic Anterior Glenohumeral Instability With Glenoid Bone Loss. Arthroscopy, 2020. 36(4): p. 940-949.
90. Lafosse, L. and S. Boyle, Arthroscopic Latarjet procedure. J Shoulder Elbow Surg, 2010. 19(2 Suppl): p. 2-12.
91. Boileau, P., N. Mercier, Y. Roussanne, C.E. Thelu, and J. Old, Arthroscopic Bankart-Bristow-Latarjet procedure: the development and early results of a safe and reproducible technique. Arthroscopy, 2010. 26(11): p. 1434-50.
92. Kany, J., O. Flamand, J. Grimberg, R. Guinand, P. Croutzet, R. Amaravathi, and P. Sekaran, Arthroscopic Latarjet procedure: is optimal positioning of the bone block and screws possible? A prospective computed tomography scan analysis. J Shoulder Elbow Surg, 2016. 25(1): p. 69-77.
93. Frank, R.M., M. Roth, C.A. Wijdicks, N. Fischer, A. Costantini, G. Di Giacomo, and A.A. Romeo, Biomechanical Analysis of Plate Fixation Compared With Various Screw Configurations for Use in the Latarjet Procedure. Orthop J Sports Med, 2020. 8(7): p. 2325967120931399.
94. Alvi, H.M., E.J. Monroe, M. Muriuki, R.N. Verma, G. Marra, and M.D. Saltzman, Latarjet Fixation: A Cadaveric Biomechanical Study Evaluating Cortical and Cannulated Screw Fixation. Orthop J Sports Med, 2016. 4(4): p. 2325967116643533.
95. Huysmans, P.E., P.S. Haen, M. Kidd, W.J. Dhert, and J.W. Willems, The shape of the inferior part of the glenoid: a cadaveric study. J Shoulder Elbow Surg, 2006. 15(6): p. 759-63.
96. Shin, J.J., J.T. Hamamoto, T.S. Leroux, M.F. Saccomanno, A. Jain, M.M. Khair, C.R. Mellano, E.F. Shewman, G.P. Nicholson, A.A. Romeo, B.J. Cole, and N.N. Verma, Biomechanical Analysis of Latarjet Screw Fixation: Comparison of Screw Types and Fixation Methods. Arthroscopy, 2017. 33(9): p. 1646-1653.
97. McMahon, P.J., S. Chow, L. Sciaroni, B.Y. Yang, and T.Q. Lee, A novel cadaveric model for anterior-inferior shoulder dislocation using forcible apprehension positioning. J Rehabil Res Dev, 2003. 40(4): p. 349-59.
98. Giles, J.W., G. Puskas, M. Welsh, J.A. Johnson, and G.S. Athwal, Do the traditional and modified latarjet techniques produce equivalent reconstruction stability and strength? Am J Sports Med, 2012. 40(12): p. 2801-7.
99. Hendy, B.A., E.M. Padegimas, L. Kane, T. Harper, J.A. Abboud, M.D. Lazarus, A.A. Romeo, and S. Namdari, Early postoperative complications after Latarjet procedure: a single-institution experience over 10 years. J Shoulder Elbow Surg, 2021. 30(6): p. e300-e308.
100. Massin, V., D. Lami, M. Ollivier, M. Pithioux, and J.N. Argenson, Comparative biomechanical study of five systems for fixation of the coracoid transfer during the Latarjet procedure for treatment of anterior recurrent shoulder instability. Int Orthop, 2020. 44(9): p. 1767-1772.
101. Bockmann, B., E. Jaeger, L. Dankl, W. Nebelung, S. Frey, W. Schmolz, and T.L. Schulte, A biomechanical comparison of steel screws versus PLLA and magnesium screws for the Latarjet procedure. Arch Orthop Trauma Surg, 2022. 142(6): p. 1091-1098.
102. Williams, R.C., R.P. Morris, M. El Beaino, and N.H. Maassen, Cortical suture button fixation vs. bicortical screw fixation in the Latarjet procedure: a biomechanical comparison. J Shoulder Elbow Surg, 2020. 29(7): p. 1470-1478.
103. Provencher, M.T., Z.S. Aman, C.M. LaPrade, A.S. Bernhardson, G. Moatshe, H.W. Storaci, J. Chahla, T.L. Turnbull, and R.F. LaPrade, Biomechanical Comparison of Screw Fixation Versus a Cortical Button and Self-tensioning Suture for the Latarjet Procedure. Orthop J Sports Med, 2018. 6(6): p. 2325967118777842.
104. Mariaux, S., R. Obrist, A. Farron, F. Becce, and A. Terrier, Is preoperative glenoid bone mineral density associated with aseptic glenoid implant loosening in anatomic total shoulder arthroplasty? BMC Musculoskelet Disord, 2021. 22(1): p. 49.
105. Mahaffy, M.D., N.K. Knowles, C. Berkmortel, S. Abdic, G. Walch, J.A. Johnson, and G.S. Athwal, Density distribution of the type E2 glenoid in cuff tear arthropathy. J Shoulder Elbow Surg, 2020. 29(1): p. 167-174.
106. Rabinowitz, J., J.J. Lin, A. Greenhouse, M.V. Rao, M. Provencher, S. Parada, R.J. Friedman, and J.K. Eichinger, The Effect of Screw Design and Cortical Augmentation on Insertional Torque and Compression in Coracoid-Glenoid Fixation in a Sawbones Model. Arthroscopy, 2020. 36(3): p. 689-695.
107. Kalouche, I., J. Crepin, S. Abdelmoumen, D. Mitton, G. Guillot, and O. Gagey, Mechanical properties of glenoid cancellous bone. Clin Biomech (Bristol, Avon), 2010. 25(4): p. 292-8.
108. Frich, L.H., N.C. Jensen, A. Odgaard, C.M. Pedersen, J.O. Sojbjerg, and M. Dalstra, Bone strength and material properties of the glenoid. J Shoulder Elbow Surg, 1997. 6(2): p. 97-104.
109. Lippitt, S.B., J.E. Vanderhooft, S.L. Harris, J.A. Sidles, D.T. Harryman, 2nd, and F.A. Matsen, 3rd, Glenohumeral stability from concavity-compression: A quantitative analysis. J Shoulder Elbow Surg, 1993. 2(1): p. 27-35.
110. Bockmann, B., E. Jaeger, L. Dankl, W. Nebelung, S. Frey, W. Schmolz, and T.L. Schulte, A biomechanical comparison of steel screws versus PLLA and magnesium screws for the Latarjet procedure. Arch Orthop Trauma Surg, 2021.
111. Sezer, A., L. Altan, and O. Ozdemir, Multiple Comparison of Age Groups in Bone Mineral Density under Heteroscedasticity. Biomed Res Int, 2015. 2015: p. 426847.
112. Boileau, P., P. Gendre, M. Baba, C.E. Thelu, T. Baring, J.F. Gonzalez, and C. Trojani, A guided surgical approach and novel fixation method for arthroscopic Latarjet. J Shoulder Elbow Surg, 2016. 25(1): p. 78-89.
113. Jeong, J.Y., Y.S. Yoo, and T. Kim, Arthroscopic Iliac Bone Block Augmentation for Glenoid Reconstruction: Transglenoid Fixation Technique Using an All-Suture Anchor. Arthrosc Tech, 2020. 9(3): p. e351-e356.
114. Mittelsteadt, M., B.J. Nelson, E.M. Rohman, R.A. Arciero, and M.A. Tompkins, Biomechanical Testing of Scapular Spine Autograft for Anterior Glenoid Bone Augmentation. Orthop J Sports Med, 2022. 10(5): p. 23259671221096682.
115. Parada, S.A., K.A. Shaw, M.E. McGee-Lawrence, J.G. Kyrkos, D.W. Pare, J. Amero, J.W. Going, B. Morpeth, R. Shelley, J.K. Eichinger, and M.T. Provencher, Anterior Glenoid Reconstruction With Distal Tibial Allograft: Biomechanical Impact of Fixation and Presence of a Retained Lateral Cortex. Orthop J Sports Med, 2021. 9(11): p. 23259671211050435.
116. Filipov, O. and B. Gueorguiev, Unique stability of femoral neck fractures treated with the novel biplane double-supported screw fixation method: a biomechanical cadaver study. Injury, 2015. 46(2): p. 218-26.