簡易檢索 / 詳目顯示

研究生: 王志賓
Wang, Ji-Pin
論文名稱: 微尺度熱傳特性之分析
The Analysis of the Characteristics of Micro-scale Heat Transfer
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 116
中文關鍵詞: 微觀熱傳導雙曲線型熱傳導拉普拉斯轉換法
外文關鍵詞: micro-scale heat transfer, hyperbolic heat conduction, Laplace transform
相關次數: 點閱:99下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文探討有限溫度脈衝及週期性溫度脈衝在三種不同熱傳導觀點下的一維傳播特色,三種模式分別是Diffusion model、 CV model 及 DPL model,後二者為雙曲線型之微觀熱傳導模式,前者則為傳統傅立葉熱傳導定律。所用的數值方法為Laplace transform及Riemann-sum approximation。由數值結果探討單一溫度脈衝及週期溫度脈衝在不同時間時於各模式作用下的傳播特徵,並指出三種模式於微觀情形下合而為一的區域。文中並討論在較大無因次時間β時,CV model產生的特殊能量分佈現象,即為兩相等強度的波峰,稱之為double-peaks的雙峰現象。另外正弦波、三角波及不同寬度脈衝波的影響也將在文中一並探討。最後以兩波對撞可能違反熱力學第二定律的特性及行為作一探討。研究結果顯示CV model之適用區域以無因次空間尺度來表示為2.8<δ<8 。

    Abstract

    In this study, the characteristics of three conduction models with finite pulse and periodic-pulses temperature sources are investigated. The three models are Diffusion model, CV model and DPL model. The latter two models possess hyperbolic features of micro-scale heat conduction and the former behaves as the conventional Fourier conduction.
    Numerical experiments via Laplace transform and Riemann-sum approximation are used to show the propagation features of these three models. The regions that these three models merged together are explored. The results indicate a special double-peaks phenomenon of CV model at larger non-dimensional time. The sine pulse, triangle pulse and wider finite pulse are also used to investigate their effects on the heat transfer modes.
    In addition, the two-waves collision phenomenon and the possibility of violation of the 2nd law of the thermodynamics are also examined. From the results obtained, the region of 2.8<δ<8 is proposed as the applicable region of CV model in the micro-scale heat transfer area.

    中文摘要 英文摘要 目錄 圖目錄 符號說明 第一章 序論-----------------------------------------------------------------------1 1.1 研究背景及動機----------------------------------------------------------1 1.2 微觀熱傳概述-------------------------------------------------------------5 1.3 微觀熱對流----------------------------------------------------------------8 1.4 微觀熱輻射--------------------------------------------------------------10 1.5 微觀熱傳導--------------------------------------------------------------11 第二章 Hyperbolic熱傳導----------------------------------------------------18 第三章 數學模式---------------------------------------------------------------30 3.1 單一有限脈衝-----------------------------------------------------------32 3.2 其它脈衝-----------------------------------------------------------------33 3.2.1 正弦波--------------------------------------------------------------33 3.2.2 對稱三角波--------------------------------------------------------34 3.2.3 非對稱鐘型波-----------------------------------------------------34 3.3 週期性脈衝--------------------------------------------------------------35 3.4 兩對撞波形式-----------------------------------------------------------36 第四章 單一有限脈衝之特性------------------------------------------------38 4.1 Diffusion model----------------------------------------------------------38 4.2 CV model-----------------------------------------------------------------40 4.3 DPL model----------------------------------------------------------------44 4.4有限脈衝在三種熱傳模式下的比較---------------------------------46 第五章 波形種類的影響------------------------------------------------------49 5.1 正弦波及其它波形-----------------------------------------------------49 5.2 脈衝寬度的影響--------------------------------------------------------51 5.3 有限脈衝(finite pulse)與單位脈衝(unit step function)的比較---53 第六章 週期性脈衝------------------------------------------------------------55 第七章 兩波對撞的特性------------------------------------------------------63 7.1 基本現象-----------------------------------------------------------------63 7.2 B值的影響(DPL model) ---------------------------------------------64 7.3 距離的極限(CV model) -----------------------------------------------65 7.4 Heaviside Unit Step function的影響----------------------------------66 第八章 結論---------------------------------------------------------------------68 參考文獻-------------------------------------------------------------------------70 附圖-------------------------------------------------------------------------------78

    參考文獻

    [1] B. Berkoff “Flat, digital and resolution that will knock you socks off: The future of display, “Business Conference of Advanced Display, SID 2004, Seattle, USA
    [2] L.J. Hornbeck, "Current status of the digital micro-mirror device(DMD) for projection television applications (Invited Paper),” International Electron Devices Technical Digest, pp. 381-384, 1993.
    [3] M. Ohring, “Reliability and failure of electronic material and devices, “ Academic press, 1998
    [4] M. A. Mighnardi, “From Ics To DMDs - DLP DMD manufacturing and design challenges,” TI Technical Journal, Jul-Sep, pp56-63, 1998
    [5] M.R. Douglas, “Life time estimates and unique failure mechanism of the digital micro-mirror device(DMD),” IEEE 02CH37320 40th. Annual International Reliability Physics Symposium, pp.118-121, 2002
    [6] S. P. Overmann, “Thermal design consideration for portable DLP projectors,” IMAPS, 2001
    [7] T. Ando, Y. Arakawa, K. Furuya, S. Komiyama, H. Nakashima(Eds.) Mesoscopic Physics and Electronics, Springer-Verlag, 1998
    [8] M. I. Flik and C. L. Tien, “Thermal phenomena in high-Tc thgin film superconductors, “ Annual Review of Heat Transfer ch. 4, pp. 115-144, 1992
    [9] M. I. Flik, “Heat transfer in superconducting films, “ Appl. Mech. Rev. vol. 44 no. 3, pp. 93-108, 1991
    [10] K.E. Goodson and M. I. Flik, “Effect of microscale thermal conduction on the packing limit of silicon-on-insulator electronic devices, “ IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 15, no.5 pp.715-722, 1992
    [11] M. I. Flik, B. I. Choi and K. E. Goodson, “Heat transfer regimes in microstructures, “ J. of Heat Transfer, ASME, vol. 114, pp.666-674, 1992
    [12] C. L. Tien, A. Majumdar, M. I. Flik, S. Kotake, K. Hijikata and Y. Hayashi, “Molecular and Microscale Transport Phenomena, “ A Report of the Japan-U.S. Joint Seminar, pp.355-377, 1995
    [13] J. Koplik and J. R. Banavar, “Continuum deductions from molecular hydrodynamics,” Annual Review Fluid Mech. vol.27 pp. 257-292, 1995
    [14] S. Kotake, “ Future aspects of molecular heat and mass transfer studies, “ Molecular and Microscale Transport Phenomena, Keynote Lecture2, 1995
    [15] J. H. Walther and P. Koumoutsakos, “Molecular dynamics simulation of nanodroplet evaporation, “ J. of Heat Transfer, ASME, vol. 123, pp.741-748, 2001
    [16] J. R. Lukes, D. Y. Li, X. G. Liang and C. L. Tien, “Molecular dynamics study of solid thin-film thermal conductivity, “ J. of Heat Transfer, ASME, vol. 122, pp. 536-543, 2000
    [17] R. L. Liboff, Kinetic Theory-classical, quantum and relativistic descriptions, Prentice-Hall International Editions, 1990
    [18] C.L. Tien and G. Chen, “Challenges in microscale conductive and radiative heat transfer,” Invited Review Paper, J. of Heat Transfer, ASME, vol. 116, pp.799-807, 1994
    [19] M. Gad-el-Hak, “The fluid mechanics of microdevices-The Freeman scholar lecture, “ J. Fluid Eng. Vol. 121, pp.5-33, 1999
    [20] N. Bellomo, P. LeTallec and B. Perthame, “Nonlinear Boltzmann equation solutions and applications to fluid dynamics, “ Appl. Mech. Rev. vol. 48, no.12, part1, 1995
    [21] D. Jou, J. Casas-Vazqoez and G. Lebon, Extended Irreversible Thermodynamics, Springer-Verlag, 1996
    [22] D.B. Tuckerman and R.F. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. EDL-2, pp. 126-129, 1981
    [23] R. Hahn. A. Kamp, A. Ginolas, M. Schmidt, J. Wolf, V. Glaw, M. Topper, O. Ehrmann and H. Reichl, “High Power Multichip Modules Employing the Planar Embedding Technique and Microchannel Water Heat Sinks,” IEEE Trans. on components, packaging and manufacturing-part A, vol. 20, no. 4, pp.432-441, 1997
    [24] B. Gromoll, “Advanced micro air-cooling systems for high density packaging,” Tenth IEEE SEMI-THERMAL conference, pp.53-58, 1994
    [25] S. K. Roy and B. L. Avanic, “A very high flux microchannel heat exchanger for cooling of semiconductor laser diode arrays,” IEEE Trans. on components, packaging and manufacturing-part B, vol. 19, no. 2, pp. 444-451, 1996
    [26] R. Beach, W. J. Benett, B. L. Freitas, D. Mundinger, B. J. Comaskey, R. W. Solarz and M. A. Emanuel, “Modular microchannel cooled heatsinks for high average power laser diode arrays,” IEEE J. of Quantum Electronics, vol. 28, no.4, pp.966-976, 1992
    [27] E. Vassilakis, “20W CW surface emitting 0.8um GaAs/GaAlAs laser diodes,” Electronics Letters, 22nd, vol. 31, no.13, pp. 1056-1057, 1995
    [28] D. Bailey, T. A. Ameel, R. O. Warrington Jr., and T. I. Savoie, “Single phase forced convection heat transfer in microgeometries – A Review, “ IECEC PAPER No. ES-396, ASME, pp. 301-316, 1995
    [29] J. C. Harley, Y. Huang, H. H. Bau and J. N. Zemel, “Gas flow in micro-channels,” J. Fluid Mech. vol. 284, pp. 257-274, 1995
    [30] X. F. Peng and B. X. Wang, “Forced convection and flow boiling heat transfer for liquid flowing through microchannels,” Int. J. Heat Mass Transfer, vol. 36, no. 14, pp. 3421-3427, 1993
    [31] T. M. Adams, S. I. Abdel-Khalik, S. M. Jeter and Z. H. Qureshi, “An experimental investigation of single-phase forced convection in microchannels,” Int. J. Heat Mass Transfer, vol. 41, no.6, pp. 851-857, 1998
    [32] B. X. Wang and X. F. Wang, “Experimental investigation on liquid forced convection heat transfer through microchannels,” Int. J. Heat Mass Transfer, vol. 37, Suppl. 1, pp.73-82, 2994
    [33] X. F. Wang and G. P. Peterson, “Forced convection heat transfer of single-phase binary mixtures through microchannels,” Experimental Thermal and Fluid Science, vol.12 pp.98-104, 1996
    [34] X. F. Peng and G. P. Peterson, “The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels, “ Int. J. Heat Mass Transfer, vol. 38, no. 4, pp.755-758, 1995
    [35] P. Wu and W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for micro-miniature Joule-Thomson refrigerators, “ Cryogenics, vol. 23, p.273-277, 1983
    [36] S.W. Ma and F.M. Gerner, “Forced convection heat transfer from microstructures,” J. of Heat Transfer, ASME, vol. 115, pp. 872-880, 1993
    [37] J. M. Lee, B. X. Wang and X. F. Peng, “Wall-adjacent layer analysis for developed-flow laminar heat transfer of gases in microchannels, “ Int. J. Heat Mass Transfer vol.43. pp. 839-847, 2000
    [38] A. Beskok and G..E. Kamiadakis, “Simulation of Slip-Flows in Complex Micro-Geometries,” ASME Proceedings DSC vol. 40, pp.355-370, 1992
    [39] Z. Y. Guo and X. B. Wu, “Compressibility effect on the gas flow and heat transfer in a microtube, “ Int. J. Heat Mass Transfer, vol. 40, pp.3251-3254, 1997
    [40] S. S. Mehendale, A. M. Jacobi and R. K. Shah, “Fluid flow and heat transfer at micro-and-meso-scales with application to heat exchanger design, “ Appl. Mech. Rev. ASME, vol.53, no.7, pp.175-193, 2000
    [41] A. B. Duncan and G. P. Peterson, “Review of microscale heat transfer, “ Appl. Mech. Rev. vol.47, no. 9, pp.397-428, 1994

    [42] G. P. Peterson, L. W. Swanson and F. M. Gerner, “Micro heat pipes, “ ch8 of Microscale Energy Transport, Edited by C. L. Tien, A. Majumdar and F. M. Gerner, Taylor&Francis ,1998
    [43] H. Herwig and O. Hausner, “Critical view on ‘new results in micro-fluid mechanics’ an example, “ Int. J. Heat Mass Transfer, vol.46, pp. 935-937, 2003
    [44] M. Gad-el-Hak, “Comments on ‘critical view on new results in micro-fluid mechanics’, “ Int. J. Heat Mass Transfer, vol.46, pp. 3941-3945, 2003
    [45] J. P. Longtin, T. Q. Qiu and C. L. Tien, “Pulsed laser heating of highly absorbing particles, “ J. of Heat Transfer, ASME, vol. 117, pp.785-788, 1995
    [46] M. C. Hipwell and C. L. Tien, “Short time-scale radiative transfer in light-emitting porous silicon, “ Int. J. Heat Mass Transfer, vol. 42, pp.249-261, 1999
    [47] J. P. Longtin and C. L. Tien, “Saturable absorption during high-intensity laser heating of liquids, “ J. of Heat Transfer, ASME, vol. 118, pp.924-930, 1996
    [48] J. P. Longtin and C. L. Tien, “Microscale radiation phenomena, “ ch3 of Microscale Energy Transport, Edited by C. L. Tien, A. Majumdar and F. M. Gerner, Taylor&Francis, 1998
    [49] A. Bejan, Heat Transfer, John Wiley & Sons, 1993
    [50] C. L. Tien, A. Majumdar and F. M. Gerner, Microscale Energy Transport, Taylor&Francis, 1998
    [51] T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating, “ J. of Heat Transfer, ASME, vol. 115, pp.835-841, 1993
    [52] T. Q. Qiu and C. L. Tien, “Femtosecond laser heating of multi-layered metals –I analysis, “ Int. J. Heat Mass Transfer, vol.37, pp.2789-2797, 1994
    [53] D. Y. Tzou , “Macro-to Microscale Heat Transfer – The Lagging Behavior,” pp. 8-9, Taylor & Francis, 1997
    [54] C. Kittel, Introduction to solid state physics, “, John Wiley & Sons, 1986
    [55] A. Majumdahr, “Microscale heat conduction in dielectric thin films, “ J. of Heat Transfer, vol. 115, pp.7-16, 1993
    [56] M. N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection, John-Wiley & Sons, 1973
    [57] W. A. Little, “The transport of heat between dissimiliar solids in low temperature, “ Can. J. Phys, vol.37, pp.334, 1959
    [58] E. T. Swartz and R. O. Pohl, “Thermal boundary resistance,” Review of Modern Physics, vol. 61, no. 3 1989
    [59] T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films, “ J. of Heat Transfer, ASME, vol. 115, pp.842-847, 1993
    [60] G. Chen, “Nonlocal and Nonequilibrium heat conduction in the vicinity of nanoparticles, “ J. of Heat Transfer, ASME, vol. 118, pp.539-545, 1997
    [61] D. D, Joseph and L. Preziosi, “Heat Waves,” Rev. Mod. Phys., Vol. 61, No. 1, pp.41-73, 1989
    [62] S. G. Brush, “The kind of motion we call heat, ” v1, v2 North-Holland, 1976
    [63] J. C. Maxwell, “On the dynamic theory of gases, “ Phios Trans. Soc. London, vol.157, pp.49-88, 1867
    [64] E. Zauderer, “Partial Differential Equations of applied mathematics, “ John Wiley & Sons, 1980
    [65] C. Cataneeo, “Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée,” Comptes Rendus, v247, pp.431-433, 1958
    [66] P. Vernotte, “Les paradoxes de la théorie continue de l’équation de la chaleur,” Comptes Rendus, v246, pp.3154-3155, 1958
    [67] J. Tavernier, “Sur l’equation de coduction de la chaleur, “ Comptes Rendus Acad. Sci., vol. 254, pp.69-71, 1962
    [68] M. Gad-el Hak, “The fluid mechanics of microdevices-The Freeman scholar lecture, “ J. Fluid Eng. Vol. 121, pp.5-33, 1999
    [69] Y. Taitel, “On the parabolic, hyperbolic and discrete formulation of the heat conduction equation, “ Int. J. Heat Mass Transfer, vol.15, pp.369-371, 1972
    [70] K. A. Hoffman and S. T. Chiang, “Computational Fluid Dynamics for Engineers” ESS, 1993
    [71] M. J. Maurer, and H. A. Thompson, “Non - Fourier effects at high heat flux, ” J. of Heat Transfer, ASME, pp.284-286, 1973
    [72] M. N. Özisik and B. Vick, “Propagation and reflection of thermal waves in a finite medium,” Int, J. Heat Mass Transfer, v27, n10, pp.1845-1854, 1984
    [73] B. Vick and M. N. Ozisik, “Growth and decay of a thermal pulse predicted by the hyperbolic heat conduction, ” J. of Heat Transfer, ASME, vol. 105, pp.902-907, 1983
    [74] D. E. Glass, M. N. Özisik, D. S. McRae,and B. Vick, “On the numerical solution of hyperbolic heat conduction,” Numerical Heat Transfer, v8, pp.497-504,1985
    [75] J. I. Frankel, B. Vick, and M. N. Özisik, “Flux formulation of hyperbolic heat conduction,” J. of Appl. Phys. V58, n9, pp.3340-3345, 1985
    [76] J. Gembarovic and V. Majernik, “Determination of thermal parameter of relaxation materials, “Int. J. Heat Mass Transfer, vol.30, no.1, pp.199-201, 1987
    [77] J. Gembarovic and V. Majernik, “Non-Fourier propagation of heat pulses in finite medium, “Int. J. Heat Mass Transfer, vol.31, no.5, pp.1073-1080, 1988
    [78] A. Vedavarz, S. Kumar and M. K. Moallemi, “Significance of non-fourier heat waves in conduction, “J. of Heat Transfer, ASME, vol.116, pp.221-224, 1994
    [79] M. N. Özisik, and D. Y. Tzou “On the wave theory in heat conduction,” J. of Heat Transfer, ASME v116, pp.526-535,1994
    [80] K. Mitra, S. Kumar, A. Vedavarz and M. K. Moallemi, “Experimental evidence of hyperbolic heat conduction in processed meat,” J. of Heat Transfer, ASME, v117, pp. 568-573,1995
    [81] W. Kaminski, “Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure, “J. of Heat Transfer, ASME, vol.112, pp.555-560, 1990
    [82] V. Majernik and E. Majerkova, “The possibility of thermal solitons,” Int. J. Heat Mass Transfer, vol.38, no.14, pp.2701-2703, 1995
    [83] A. P. Fordy. “Soliton Theroy: a survey of results” Manchester University Press, 1990
    [84] Z. Y. Guo and Y. S. Xu, “Non-Fourier heat conduction in IC chip,” J. of Heat Transfer, ASME, vol.117, pp.174-177, 1995
    [85] D. W. Tang and N. Araki, “Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance,” Int. J. Heat Mass Transfer, v39, n8, pp.1585-1590, 1996
    [86] D. W. Tang, and N. Araki, “Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses,” Int. J. Heat Mass Transfer, v42, pp.855-860, 1999
    [87] H. T. Chen and J. Y. Lin, “Numerical solution of two-dimensional nonlinear hyperbolic heat conduction problems,” Numerical heat transfer, part B, v35, pp.287-307, 1994
    [88] H. T. Chen and J. Y. Lin, “Analysis of two-dimensional hyperbolic heat conduction problems, “Int. J. of Heat and Mass Transfer, vol. 37, pp.153-164, 1994
    [89] C. Bai and A. S. Lavine, “On hyperbolic heat conduction and the second law of thermodynamics, “ J. of Heat Transfer, ASME, vol. 117, pp.256-263, 1995
    [90] A. Barletta and E. Zanchini, “Hyperbolic heat conduction and local equilibrium: a second law analysis, “ Int. J. Heat Mass Transfer, vol. 40, no. 5, pp.1007-1016, 1997
    [91] A. Barletta and E. Zanchini, “Hyperbolic heat conduction and thermal resonances in a cylindrical solid carrying a steady-periodic electric field, “, Int. J. Heat Mass Transfer, vol. 39, no. 6, pp.1307-1315, 1996
    [92] L. Wang and M. Xu, “Well-posedness of dual-phase-lagging heat conduction equation: higher dimensions, “Int. J. Heat Mass Transfer, vol.38, no.45, pp.1165-1171, 1995
    [93] L. Wang “Solution structure of hyperbolic heat-conduction equation,” Int. J. of Heat and Mass Transfer, vol. 43, pp.353-364, 2000
    [94] W. B. Lor and H. S. Chu, “Effect of interface thermal resistance on heat transfer in a composite medium using the thermal wave model,” Int. J. Heat Mass Transfer, v43, pp.653-663, 1999
    [95] A.Barletta and E. Zanchini, “A thermal potential formulation of hyperbolic heat conduction, “ J. of Heat Transfer, ASME, vol.121, pp. 166-169, 1999
    [96] A. S. Tsai and C. I. Hung, “Thermal wave propagation in a bi-layered composite sphere due to a sudden temperature change on the outer surface, “ Int. J. Heat Mass Transfer, vol. 46, pp.5137-5144, 2003
    [97] H. Herwig and K. Beckert, “Fourier versus non-Fourier heat conduction in materials with a nonhomogeous inner structure, “ J. of Heat Transfer, ASME, pp.363-365, 2000
    [98] P. Guillemet, J. P. Bardon and C. Rauch, “Experimental route to heat conduction beyond the Fourier equation, “ Int. J. Heat Mass Transfer, vol. 40, no.17, pp.4043-4053, 1997
    [99] P. J. Antaki, “Solution for non-fourier dual phase lag heat conduction in a semiinfinite slab with surface heat flux, “Int. J. Heat Mass Transfer, vol.41, no.14, pp.2253-2258, 1998
    [100] W. S. Kim, L. G. Hector and M. N. Ozisik, “Hyperbolic heat conduction due to axisymmetric continuous or pulsed surface heat sources, “ J. Appl. Phys, vol.68, no.11, pp.5478-5485, 1990
    [101] Q. M. Fan and W. Q. Lu, “A new numerical method to simulate the non-Fourier heat conduction in a single-phase medium, “ Int. J. Heat Mass Transfer, vol. 45, pp. 2815-2821, 2002
    [102] M. Honner and J. Kunes, “On the wave diffusion and parallel nonequilibrium heat conduction, “ J. of Heat Transfer, ASME, vol.121, pp.702-707, 1999
    [103] D. Y. Tzou, M.N. Ozisik and R. J. Chiffelle, “The lattice temperature in the microscopic two-step model, “ J. of Heat Transfer, ASME, vol.116, pp. 1034-1038, 1994
    [104] D. Y. Tzou, “Thermal shock phenomena under high-rate response in solids,” in Annual Review of Heat Transfer IV, edited by C. L. Tien, Ch3, pp.111-185, 1992
    [105] D. Y. Tzou, “A unified field approach for heat coduction from macro-to-micro-scales,” ASME J. of Heat Transfer, v117, pp. 8-16, 1995
    [106] D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating, “Int. J. Heat Mass Transfer, vol.17, pp.3231-3240, 1995
    [107] D. Y. Tzou and Y. Chang, “An analytical on the fast-tansient process in small scales, “ Int. J. Engng. Sci. vol.33, no.10, pp.1449-1463, 1995
    [108] D. Y. Tzou, “Experimental support for the lagging behavior in heat propagation, “ J. of Thermophysics and Heat Transfer, vol. 9, no. 4, pp. 686-693, 1995
    [109] D. Y. Tzou, “An engineering assessment to the relaxation time in thermal wave propagation, “Int. J. Heat Mass Transfer, v42, pp.855-860,1999
    [110] W. Dai and R. Nassar, “An approximate analytic method for solving 1D dual-phase-lagging heat transport equations, “ Int. J. Heat Mass Transfer, vol.45 pp.1585-1593, 2002
    [111] M. Xu and L. Wang, “Thermal oscillation and resonance in dual-phase-lagging heat conduction, “ Int. J. Heat Mass Transfer, vol. 45, pp. 1055-1061, 2002
    [112] A. Majumdar and J. Varesi, “Nanoscale temperature distributions measured by scanning Joule Expansion microscopy, “ J. of Heat Transfer, ASME, vol. 120, pp.297-305. 1998
    [113] P. V. O’Neil, Advanced Engineering Mathematics, PWS, 1995
    [114] D. G. Duffy, Transform Methods for Solving Partial Differential Equations, CRC Press, 1994
    [115] F. J. Moizio, “DLP Technology Overview” presentation in Infocomm International, Las Vegas, U.S., 2002
    [116] H. Monch, G. Derra, E. Fischer and X. Riederer, “UHP Lamps for Projection Sysems” presentation in IDW, Japan, 2001

    下載圖示 校內:立即公開
    校外:2004-09-08公開
    QR CODE