| 研究生: |
翁政林 Weng, Zheng-Lin |
|---|---|
| 論文名稱: |
利用效果導向分析與非目標分析探討再生水中之內分泌干擾物 Investigation of Endocrine Disrupting Compounds in Reclaimed Water Using Effect-Directed Analysis and Non-Target Analysis |
| 指導教授: |
周佩欣
Chou, Pei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 再生水 、內分泌干擾活性 、報導基因重組酵母菌試驗法 、效果導向分析 、非目標分析 |
| 外文關鍵詞: | Reclaimed water, Endocrine disrupting activity, Recombinant yeast reporter gene assay, Effect-directed analysis, Non-target analysis |
| 相關次數: | 點閱:29 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球缺水的問題日益嚴重,已然成為一項迫切的全球性挑戰。這不僅影響人類的生存和發展,也對全球安全和經濟造成潛在威脅。缺水的原因涵蓋許多面向,包括氣候變化、人口增長、不合理的用水管理、水污染,以及貧富差距導致的資源分配不均等因素。其中,廢水回用是一個增加人類可使用之淡水資源的途徑。為了解決水資源不足的問題,世界各國積極發展研究再生水的處理技術,並建立許多再生水廠,期能將生活污水等廢水淨化至能夠再利用的水質。
為探討再生水中具內分泌干擾活性之新興污染物種類,本研究以報導基因重組酵母菌試驗法檢測再生水廠中各處理單元之出流水,並藉由效果導向分析,以層析方法分離樣本後,再次進行生物試驗以確認具有內分泌干擾活性之集份,後續透過非目標分析嘗試確定集份樣本中之化合物。
內分泌干擾活性試驗結果顯示,於所有樣本中可測得抗鹽皮質激素活性 (3.5 - 75.1 μg Spironolactone equivalent (SPL-EQ)/L),以及類芳香烴活性 (6.3 - 59.0 ng β-Naphthoflavone equivalent (β-NF-EQ)/L)。抗雄激素、類甲狀腺激素或抗甲狀腺激素活性可於進流或部分單元出流水中測得,但並未出現於放流水中。於效果導向非目標分析的結果顯示,於各再生水廠之進流水中識別出藥物合成原料如3,5-Dichlorobenzoic acid、Octadecanoic acid, 2,3-Dihydroxypropyl ester、2-Keto-L-gulonic acid、2,4-Dichlorobenzoic acid,抗氧化劑如Phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl-,以及其他化合物如Tridecanoic acid. 12-methyl-, methyl ester、Methyl Octanoate、2-Azido-2,4,4,6,6,-pentamethylheptane等。於放流水樣本中,大部分物質皆被去除,展示出再生水廠處理單元之去除能力。
With the advancement of industry and treatment technologies, the application of reclaimed water has become increasingly widespread in many countries. Reclaimed water can be used for agricultural irrigation, groundwater recharge, and even as ultrapure water for industrial processes. However, the presence of unknown contaminants in reclaimed water may not only affect product yield but also pose potential environmental hazards. Therefore, identifying the types of contaminants present in reclaimed water is of critical importance.
Results showed anti-mineralocorticoid activity (3.5 - 75.1 μg Spironolactone equivalent (SPL-EQ)/L) and aryl hydrocarbon-like activity (6.3 - 59.0 ng β-Naphthoflavone equivalent (β-NF-EQ)/L) in all samples, while no significant androgenic or mineralocorticoid-like activities were observed. Anti-androgenic activity (66.1 - 80.9 μg Flutamide equivalent (FLU-EQ)/L) was found in influents, with thyroid hormone-like (0.06 - 0.14 μg Triiodothyronine equivalent (T3-EQ)/L) and anti-thyroid activities (51.0 - 66.6 μg 3,5-Di-tert-butyl-4-hydroxybenzoic acid equivalent (BHT-COOH -EQ)/L) detected at certain sites. EDA revealed pharmaceutical intermediates, antioxidants, and fatty acid derivatives in influent samples. Most compounds were effectively removed in effluents, highlighting the treatment effect of reclamation processes.
Al-Rifai, J. H., Khabbaz, H., & Schäfer, A. I. (2011). Removal of Pharmaceuticals and Endocrine Disrupting Compounds in a Water Recycling Process Using Reverse Osmosis Systems. Separation and Purification Technology, 77(1), 60-67. https://doi.org/10.1016/j.seppur.2010.11.020
Altuwaijri, N., Fitaihi, R., Alkathiri, F. A., Bukhari, S. I., Altalal, A. M., Alsalhi, A., Alsulaiman, L., Alomran, A. O., Aldosari, N. S., Alqhafi, S. A., Alhamdan, M., & Alfaraj, R. (2025). Assessing the Antibacterial Potential and Biofilm Inhibition Capability of Atorvastatin-Loaded Nanostructured Lipid Carriers via Crystal Violet Assay. Pharmaceuticals, 18(3), 18, Article 417. https://doi.org/10.3390/ph18030417
Alvarez-Mora, I., Arturi, K., Béen, F., Buchinger, S., El Mais, A. E. R., Gallampois, C., Hahn, M., Hollender, J., Houtman, C., Johann, S., Krauss, M., Lamoree, M., Margalef, M., Massei, R., Brack, W., & Muz, M. (2025). Progress, Applications, and Challenges in High-throughput Effect-directed Analysis for Toxicity Driver Identification — Is it time for HT-EDA? Analytical and Bioanalytical Chemistry, 417(3), 451-472. https://doi.org/10.1007/s00216-024-05424-4
Api, A. M., Belsito, D., Botelho, D., Bruze, M., Burton, G. A., Buschmann, J., Cancellieri, M. A., Dagli, M. L., Date, M., Dekant, W., Deodhar, C., Fryer, A. D., Jones, L., Joshi, K., Kumar, M., Lapczynski, A., Lavelle, M., Lee, I., Liebler, D. C.,…Tokura, Y. (2021). RIFM fragrance ingredient safety assessment, Methyl octanoate, CAS Registry Number 111-11-5 [Review]. Food and Chemical Toxicology, 153, 10, Article 112362. https://doi.org/10.1016/j.fct.2021.112362
Aziz, M., & Ojumu, T. (2020). Exclusion of Estrogenic and Androgenic Steroid Hormones from Municipal Membrane Bioreactor Wastewater Using UF/NF/RO Membranes for Water Reuse Application. Membranes, 10(3), 17, Article 37. https://doi.org/10.3390/membranes10030037
Backe, W. J. (2021). Suspect and Non-target Screening of Reuse Water by Large-volume Injection Liquid Chromatography and Quadrupole Time-of-flight Mass Spectrometry. Chemosphere, 266, 13, Article 128961. https://doi.org/10.1016/j.chemosphere.2020.128961
Banerjee, S., & Mazumdar, S. (2012). Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte [Review]. International Journal of Analytical Chemistry, 2012, 40, Article 282574. https://doi.org/10.1155/2012/282574
Blum, K. M., Andersson, P. L., Renman, G., Ahrens, L., Gros, M., Wiberg, K., & Haglund, P. (2017). Non-target Screening and Prioritization of Potentially Persistent, Bioaccumulating and Toxic Domestic Wastewater Contaminants and their Removal in on-site and Large-scale Sewage Treatment Plants. Science of the Total Environment, 575, 265-275. https://doi.org/10.1016/j.scitotenv.2016.09.135
Brack, W. (2011). Effect-directed Analysis of Complex Environmental Contamination (Vol. 15). Springer Science & Business Media.
Bustani, G., Alghetaa, H., Mohammed, A., Nagarkatti, M., & Nagarkatti, P. (2025). The Aryl Hydrocarbon Receptor: A New Frontier in Male Reproductive System [Review]. Reproductive Biology and Endocrinology, 23(1), 25, Article 70. https://doi.org/10.1186/s12958-025-01401-3
Canchola, A., Tran, L. N., Woo, W., Tian, L. H., Lin, Y. H., & Chou, W. C. (2025). Advancing Non-target Analysis of Emerging Environmental Contaminants with Machine Learning: Current Status and Future Implications. Environment International, 198, 15, Article 109404. https://doi.org/10.1016/j.envint.2025.109404
ChemicalBook. (2024, August 21). ChemicalBook. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB5735138.htm#:~:text=L,antimicrobial%20and%20antioxidant%20in%20foodstuffs
ChemicalBook. (2025a, June 20). ChemicalBook. https://m.chemicalbook.com/CAS_50-84-0.htm
ChemicalBook. (2025b, June 12). ChemicalBook. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8468783.htm#:~:text=Uses
ChemicalBook. (2025c, May 13). ChemicalBook. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3760057.htm#:~:text=3%2C5,fluorophenyl%29methanone
Chen, Fan, M. X., Liu, Y., Sun, B. Q., Liu, M. X., Wu, J. L., Li, N., & Guo, M. Q. (2019). Advances in MS Based Strategies for Probing Ligand-Target Interactions: Focus on Soft Ionization Mass Spectrometric Techniques [Review]. Frontiers in Chemistry, 7, 17, Article 703. https://doi.org/10.3389/fchem.2019.00703
Chen, Y., Liu, L., Shan, X. Y., Du, G. C., Zhou, J. W., & Chen, J. (2019). High-Throughput Screening of a 2-Keto-L-Gulonic Acid-Producing Gluconobacter oxydans Strain Based on Related Dehydrogenases. Frontiers in Bioengineering and Biotechnology, 7, 9, Article 385. https://doi.org/10.3389/fbioe.2019.00385
Devaisy, S., Kandasamy, J., Nguyen, T. V., Ratnaweera, H., & Vigneswaran, S. (2023). Membranes in Water Reclamation: Treatment, Reuse and Concentrate Management. Membranes, 13(6), 23, Article 605. https://doi.org/10.3390/membranes13060605
Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., Zoeller, R. T., & Gore, A. C. (2009). Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement [Review]. Endocrine Reviews, 30(4), 293-342. https://doi.org/10.1210/er.2009-0002
Diep, T. T., Yoo, M. J. Y., Pook, C., Sadooghy-Saraby, S., Gite, A., & Rush, E. (2021). Volatile Components and Preliminary Antibacterial Activity of Tamarillo (Solanum betaceum Cav.). Foods, 10(9), 19, Article 2212. https://doi.org/10.3390/foods10092212
Eliuk, S., & Makarov, A. (2015). Evolution of Orbitrap Mass Spectrometry Instrumentation. In R. G. Cooks & J. E. Pemberton (Eds.), Annual Review of Analytical Chemistry, Vol 8 (Vol. 8, pp. 61-80). Annual Reviews. https://doi.org/10.1146/annurev-anchem-071114-040325
Esser, C. (2016). The Aryl Hydrocarbon Receptor in Immunity: Tools and Potential. In M. C. Cuturi & I. Anegon (Eds.), Suppression and Regulation of Immune Responses: Methods and Protocols, Vol Ii (Vol. 1371, pp. 239-257). Humana Press Inc. https://doi.org/10.1007/978-1-4939-3139-2_16
Fouyet, S., Ferger, M. C., Leproux, P., Rat, P., & Dutot, M. (2024). Advancing Endocrine Disruptors via In Vitro Evaluation: Recognizing the Significance of the Organization for Economic Co-Operation and Development and United States Environmental Protection Agency Guidelines, Embracing New Assessment Methods, and the Urgent Need for a Comprehensive Battery of Tests [Review]. Toxics, 12(3), 20, Article 183. https://doi.org/10.3390/toxics12030183
Galuppo, P., & Bauersachs, J. (2012). Mineralocorticoid Receptor Activation in Myocardial Infarction and Failure: Recent Advances [Review]. European Journal of Clinical Investigation, 42(10), 1112-1120. https://doi.org/10.1111/j.1365-2362.2012.02676.x
Gauger, K. J., Giera, S., Sharlin, D. S., Bansal, R., Lannacone, E., & Zoeller, R. T. (2007). Polychlorinated Biphenyls 105 and 118 Form Thyroid Hormone Receptor Agonists after Cytochrome P4501A1 Activation in Rat Pituitary GH3 Cells. Environmental Health Perspectives, 115(11), 1623-1630. https://doi.org/10.1289/ehp.10328
Ito-Harashima, S., Matano, M., Onishi, K., Nomura, T., Nakajima, S., Ebata, S., Shiizaki, K., Kawanishi, M., & Yagi, T. (2020). Construction of Reporter Gene Assays Using CWP and PDR Mutant Yeasts For Enhanced Detection of Various Sex Steroids. Genes and Environment, 42(1), 19, Article 20. https://doi.org/10.1186/s41021-020-00159-x
Kavlock, R. J., Daston, G. P., DeRosa, C., FennerCrisp, P., Gray, L. E., Kaattari, S., Lucier, G., Luster, M., Mac, M. J., Maczka, C., Miller, R., Moore, J., Rolland, R., Scott, G., Sheehan, D. M., Sinks, T., & Tilson, H. A. (1996). Research Needs for the Risk Assessment of Health and Environmental Effects of Endocrine Disruptors: A Report of the US EPA-Sponsored Workshop [Review]. Environmental Health Perspectives, 104, 715-740. https://doi.org/10.1289/ehp.96104s4715
Kawajiri, K., & Fujii-Kuriyama, Y. (2017). The Aryl Hydrocarbon Receptor: A Multifunctional Chemical Sensor for Host Defense and Homeostatic Maintenance [Review]. Experimental Animals, 66(2), 75-89. https://doi.org/10.1538/expanim.16-0092
Kim, F., Pablo, G. F., Lubertus, B., Lutz, A., Karin, W., Félix, H., Agneta, O., & Johan, L. (2023). Effect-based Evaluation of Water Quality in a System of Indirect Reuse of Wastewater for Drinking Water Production. Water Research, 242, 12, Article 120147. https://doi.org/10.1016/j.watres.2023.120147
La Merrill, M. A., Vandenberg, L. N., Smith, M. T., Goodson, W., Browne, P., Patisaul, H. B., Guyton, K. Z., Kortenkamp, A., Cogliano, V. J., Woodruff, T. J., Rieswijk, L., Sone, H., Korach, K. S., Gore, A. C., Zeise, L., & Zoeller, R. T. (2020). Consensus on the Key Characteristics of Endocrine-disrupting Chemicals as a Basis for Hazard Identification. Nature Reviews Endocrinology, 16(1), 45-57. https://doi.org/10.1038/s41574-019-0273-8
Luccio-Camelo, D. C., & Prins, G. S. (2011). Disruption of Androgen Receptor Signaling in Males by Environmental Chemicals [Review]. Journal of Steroid Biochemistry and Molecular Biology, 127(1-2), 74-82. https://doi.org/10.1016/j.jsbmb.2011.04.004
Matisová, E., & Hrouzková, S. (2012). Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection [Review]. International Journal of Environmental Research and Public Health, 9(9), 3166-3196. https://doi.org/10.3390/ijerph9093166
Miller, C. A. (1999). A Human Aryl Hydrocarbon Receptor Signaling Pathway Constructed in Yeast Displays Additive Responses to Ligand Mixtures. Toxicology and Applied Pharmacology, 160(3), 297-303. https://doi.org/10.1006/taap.1999.8769
Mladenov, N., Dodder, N. G., Steinberg, L., Richardot, W., Johnson, J., Martincigh, B. S., Buckley, C., Lawrence, T., & Hoh, E. (2022). Persistence and Removal of Trace Organic Compounds in Centralized and Decentralized Wastewater Treatment Systems. Chemosphere, 286, 14, Article 131621. https://doi.org/10.1016/j.chemosphere.2021.131621
Mohiuddin, I., Kumar, T. R., Zargar, M. I., Wani, S. U. D., Mahdi, W. A., Alshehri, S., Alam, P., & Shakeel, F. (2022). GC-MS Analysis, Phytochemical Screening, and Antibacterial Activity of Cerana indica Propolis from Kashmir Region. Separations, 9(11), 11, Article 363. https://doi.org/10.3390/separations9110363
Nürenberg, G., Kunkel, U., Wick, A., Falås, P., Joss, A., & Ternes, T. A. (2019). Nontarget Analysis: A New Tool for the Evaluation of Wastewater Processes. Water Research, 163, 11, Article 114842. https://doi.org/10.1016/j.watres.2019.07.009
Rhee, J., Loftfield, E., Albanes, D., Layne, T. M., Stolzenberg-Solomon, R., Liao, L. M., Playdon, M. C., Berndt, S. I., Sampson, J. N., Freedman, N. D., Moore, S. C., & Purdue, M. P. (2023). A Metabolomic Investigation of Serum Perfluorooctane Sulfonate and Perfluorooctanoate. Environment International, 180, 10, Article 108198. https://doi.org/10.1016/j.envint.2023.108198
Saunders, D. G., & Vanatta, L. E. (1974). Derivatization and Gas Chromatographic Measurement of Some Thermally Unstable Ureas [Note]. Analytical Chemistry, 46(9), 1319-1321. https://doi.org/10.1021/ac60345a048
Shiizaki, K., Asai, S., Ebata, S., Kawanishi, M., & Yagi, T. (2010). Establishment of Yeast Reporter Assay Systems to Detect Ligands of Thyroid Hormone Receptors α and β. Toxicology in Vitro, 24(2), 638-644. https://doi.org/10.1016/j.tiv.2009.10.001
Sullivan, L. J., Eldridge, J. M., & Knaak, J. B. (1967). Determination of Carbaryl and Some Other Carbamates by Gas Chromatography. Journal of Agricultural and Food Chemistry, 15(5), 927-+. https://doi.org/10.1021/jf60153a017
Zhang, J. Y., Huang, X., Liu, H. L., Liu, W. P., & Liu, J. (2018). Novel Pathways of Endocrine Disruption Through Pesticides Interference With Human Mineralocorticoid Receptors. Toxicological Sciences, 162(1), 53-63. https://doi.org/10.1093/toxsci/kfx244
余致廣. (2021). 污水處理廠中內分泌干擾活性及個人保健用品之濃度變化和二苯甲酮類氯化衍生物之活性探討 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/r38z8r
林緯博. (2017). 以生物試驗法與液相層析串聯式質譜儀檢測臺灣污水處理廠中內分泌干擾物質與其氯化衍生物之宿命與活性變化 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/8jkwrt
葉奕伯. (2014). 以生物試驗法及液相層析串聯式質譜儀分析污水處理廠中內分泌干擾物質及其衍生物之變化 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/r83j9e
倪嘉亨. (2022). 結合效果導向與非目標分析探討臺灣南部河川之內分泌干擾物 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/at4p57
賴廷碩. (2020). 利用效應導向分析與非目標篩選分析臺灣工業廢水中之內分泌干擾物 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/ae2a5j
臺南市政府安平水資源回收中心. (2022). http://www.anpingwater.com.tw/
臺南市永康水資源回收中心. (2022). https://www.ykwrrc.com.tw/
高雄市政府水利局. (2016). https://wrb.kcg.gov.tw/Business/SewageTreatment/TreatmentPlant/WaterResources
臨海水務公司. (2021). https://www.hdec-ctci-linhai.com/