簡易檢索 / 詳目顯示

研究生: 梁日蕾
Liang, Jih-Lei
論文名稱: 長期使用慢跑鞋其避震能力之變化
The cushioning of running shoes after long-term use
指導教授: 邱宏達
Chiu, Hung-Ta
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 人體測試材料測試撞擊力峰值脛骨加速度
外文關鍵詞: subjects test, material test, impact force peak, tibial acceleration
相關次數: 點閱:202下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢跑鞋是跑步運動中不可或缺的運動元件,而避震則是慢跑鞋的主要功能之ㄧ,長期使用慢跑鞋,在其避震能力有明顯衰退時,及時的汰舊換新可避免下肢運動傷害的發生。本研究的目的為評估人體穿著慢跑鞋快走、慢跑和快跑時,著地撞擊地面的撞擊能量範圍,作為材料測試撞擊能量設定之依據。並評估慢跑鞋在長時間使用情形下其避震能力是否發生衰退,並由人體測試來檢測慢跑鞋的避震效應是否會因長時間使用而改變。一款市售慢跑鞋作為撞擊能量評估的受測鞋,藉由材料測試和人體測試的比較結果,評估快走、慢跑及快跑著地時對鞋底的撞擊能量分別為0.45~1.85、1.07~2.08及2.06~4.00 joule。兩款市售慢跑鞋(Nike air shox和Mizuno wave)共17雙,其中15位有慢跑習慣的受試者各穿著一雙作為測試鞋,進行長期跑步機跑步實驗,另兩雙為對照鞋。穿著Nike air shox的受試者中,有4位累積跑步距離至400公里,一位受試者累積跑步距離達900公里;穿著Mizuno wave的受試者中,有5位累積跑步距離至200公里。慢跑鞋材料測試的結果顯示,兩款慢跑鞋在累積長距離跑步的過程中,撞擊力峰值有持續增加的現象,但兩款對照鞋在經過12個月的定期追蹤後,發現與實驗鞋一樣避震能力都有些微衰退的現象,因此推論慢跑鞋使用初期避震能力的衰退應是放置時間所造成。在人體測試的30分鐘跑步測試中,脛骨加速度無論是在跑步過程中,或是隨著累積跑步距離增加,幾乎都沒有出現隨之增加的現象。人體實際跑步的變異性過大,或受試者無法達到疲勞狀態都可能是導致此現象的原因。根據本研究的結果建議從事跑步機運動的跑者,可以準備一雙跑步機運動的專用慢跑鞋,則慢跑鞋的避震能力在經過至少400公里的跑步使用後,仍不會有明顯衰退的現象。

    The purpose of this study was to estimate the impact energy range as foot strike for walking, jogging and running. Changes of the cushioning ability of running shoes after long distance running were investigated in this study. With comparisons of the material and subject tests, the impact energy as heel strike was 0.45~1.85 joule, 1.07 ~ 2.08 and 2.06~4.00 joule for walking, jogging and running, respectively. Seventeen pairs of two type running shoes (Nike air shox and Mizuno wave) were used in this study. Fifteen pairs are the testing shoes and the other two pairs are the control shoes. Each of fifteen subjects wore a new shoe at the beginning of the experiment and proceed the long-term treadmill running. The total running distances of four subjects with Nike air shox were 400km, one subject even accumulated running distance to 900km; the total running distances of five subjects with Mizuno wave were 200km. The results of material test showed that impact force peaks significantly increased as the running distance increased. But the results of control shoes regularly tracking during 12 months was shown that the cushioning ability has slight decline as the results of testing shoes. The initial attenuation of running shoes cushioning ability may be attributed to age of the shoes. In the subject test, the tibial peak accelerations didn’t increase as the running distance and running time increased. The variability of human running or subjects cannot reach fatigue in 30 minutes treadmill running may be the reasons that the tibial impact acceleration didn’t change after long distance or long time running. According to the results of this present study, it is recommended that treadmill runners should prepare a running shoe that is dedicated for treadmill exercise, eventually the cushioning ability of running shoes will not significantly attenuation least of 400km running distance.

    摘要 I Abstract II 致謝 III 目錄 V 表目錄 VII 圖目錄 VIII 附錄資料 X 第壹章 緒論 第一節 前言與問題背景 1 第二節 名詞解釋 3 第三節 研究目的 5 第貳章 文獻探討 第一節 運動鞋避震功能檢測 6 第二節 撞擊能量的評估 8 第三節 長期使用慢跑鞋其避震能力之變化 10 第四節 總結 14 第參章 研究方法 第一節 撞擊能量評估 16 第二節 慢跑鞋長期使用之避震能力變化 21 第肆章 結果 第一節 撞擊能量評估 25 第二節 慢跑鞋長期使用之避震能力變化 27 第伍章 討論與結論 第一節 撞擊能量評估 40 第二節 慢跑鞋長期使用之避震能力變化 39 第三節 結論 與建議 46 參考文獻 48 附錄一 五雙Nike受測鞋累積不同跑步距離後材料測試中不同撞擊能量下的撞擊力峰值 53 附錄二 五雙Mizuno 受測鞋累積不同跑步距離後材料測試中不同撞擊能量下的撞擊力峰值 56 附錄三 五位受試者在累積不同跑步距離後30 分鐘跑步測試中的負加速度峰值 59 附錄資料 62

    邱宏達、相子元、林德嘉(2002)。由地面反作用力評估鞋底避震能力—材料與人體測試之比較。中華民國體育學報,32輯,69-78頁。
    邱宏達(2002)。赤足與穿鞋跑之著地策略分析。大專體育學刊,4卷2期,101-108頁。
    邱宏達(2004)。不同慢跑鞋與運動表面組合之避震特性。成大體育,37卷1期,39-48頁。
    相子元(1998),運動鞋與人體生物力學之研究計劃報告書。經濟部科技專案研究。
    Alton F, Baldey L, Caplan S, Morrissey MC (1998).A kinematic comparison of overground and treadmill walking. Clinical Biomechanics; 13, 434–40.
    American Academy of Podiatric Sports Medicine Web site. http://www.aapsm.org /ct0598.html (accessed 15 Jun 2007).
    American Society of Testing and Materials (ASTM). (1994). Standard definitions of terms relating to athletic shoes and biomechanics (Section 15, Vol.15.07, F869-86, p440).
    Bates BT (1989). Comment on ‘The influence of running velocity and midsole hardness on external impact forces in heel-toe running’. Journal of Biomechanics, 22(8/9), 963-965.
    Chi KJ and Schmitt D (2005). Mechanical energy and effective foot mass during impact loading of walking and running. Journal of Biomechanics, 38(7), 1387-1395.
    Chiu HT (2000). Using ground reaction force to evaluate cushioning property of running shoe:The establishment of standard for material test. National Taiwan Normal University.
    Chiu HT and Shiang TY (2007). Effects of insoles and additional shock absorption foam on the cushioning properties of sport shoes. Journal of Applied Biomechanics, 23(2), 119-127.
    Clowers KG, Zhang S , Wortley M, Kohstall C (2004). Longitudinal perception about cushioning, fit, and comfort of a running shoe over 400 miles. Medicine & Science in Sports & Exercise, 36(5), 267.
    Derrick TR, Dereu D, Mclean SP (2002). Impacts and kinematic adjustments during an exhaustive run. Medicine & Science in Sports & Exercise, 34(6), 998-1002.
    Dib MY, Smith J, Bernhardt KA, Kaufman KR and Miles KA (2005). Effect of Environmental Temperature on Shock absorption properties of running shoes. Clinical Journal of Sport Medicine, 15(3), 172-176.
    Foti T and Hamill J (1993). Shoe cushioning effects on vertical ground reaction force during running. Journal of Biomechanics, 27(6), 665.
    Frederick EC, Hagy JL (1986). Factors affecting peak vertical ground reaction forces in running. International Journal of Sports Biomechanics, 2, 41-49.
    Gary J (2005). Wogging…A New Exercise. Health & Wellness – Associated Content. Published June 22, 2005, from the World Wide Web: http:// www.associatedcontent. com/article/4206/wogging_a_new_exercise.html?cat=50.
    Hennig EM, Milani TL and Lafortune MA (1993). Use of ground reaction force parameters in predicting peak tibial accelerations in running. Journal of Applied Biomechanics, 9, 306-314.
    Kaelin X, Denoth J, Stacoff A and Stussi E (1985). Cushioning during running-material tests contra subject tests. In S. Perren (Ed.) Biomechanics: Current Interdisciplinary Research, 2, 651-656, Martinus nijhoff publisher.
    Kinoshita H and Bates BT (1996). The effect of environmental temperature on the properties of running shoes. Journal of Applied Biomechanics, 12, 258-268.
    Kong PW, Candelaria NG, Smith DR (2008). Running in new and worn shoes: a comparison of three types of cushioning footwear. British Journal of Sports Medicine, 43, 745-749.
    Lafortune MA and Henning EM (1992). Cushioning properties of footwear during walking: accelerometer and force platform measurements. Clinical Biomechanics, 7, 181–184.
    Lafortune MA, Henning EM, and Lake MJ (1996). Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness. Journal of Biomechanics, 29(12), 1523–1529.
    McNair PJ and Marshall RN (1994). Kinematic and kinetic parameters associated with running in different shoes. British Journal of Sports Medicine, 28(4),256-260.
    Mizrahi J, Verbitsky O, Isakov E, Daily D (2000). Effect of fatigue on leg kinematics and impact acceleration in long distance running. Human Movement Science, 19, 139-151.
    Munro CF, Miller DI and Fuglevand AJ (1987). Ground reaction forces in running:reexamination. Journal of Biomechanics, 20(2), 147-155.
    Murray MP, Spurr GB, Sepic SB, Gardner GM, Mollinger LA (1985).Treadmill vs. floor walking: kinematics, electromyogram, and heart rate. Journal of Applied Physiology; 59(1), 87–91.
    Nigg BM, De Boer RW, Fisher V (1995). A kinematic comparison of overground and treadmill running. Medicine and Science in Sport and Exercise, 27, 99-105.
    Riley PO, Paolini G, Della Croce U, Paylo KW, Kerrigan DC (2007).A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait & Posture; 26,17–24.
    Schache AG, Blanch PD, Rath DA, Wrigley TV, Starr R, Bennell KL (2001). A comparison of overground and treadmill running for measuring the three- dimensional kinematics of the lumbo-pelvic-hip complex. Clinical Biomechanics, 16(8), 667-680.
    Schwanitz S and Odenwald S (2008). Long-term cushioning properties of running shoes. The Engineering of Sport 7, 2, 95-100.
    Snel JG., Delleman N.J., Heerkens Y.F and Schenau G.J (1985). Shock-absorbing characteristics of running shoes during actual running. In D. Winter, et. al.(Ed.) Biomechanics IX-B, 133-137, Human Kinetics, Champaign, IL.
    Strathy GM, Chao EY, Laughman RK (1983). Changes in knee function associated with treadmill ambulation. Journal of Biomechanics; 16, 517–22.
    Stergiou N, Bates BT and Davis HP (1993). The effects of midsole hardness on shoe cushioning. Journal of Biomechanics, 26(3), 321.
    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD (2003). A prospective study of running injuries: the Vancouver Sun Run “In Training” clinics. British Journal of Sports Medicine, 37, 239-244.
    Verdejo R and Mills NJ (2004a).. Simulating the effects of long distance running on shoe midsole foam. Polymer Testing, 23, 567–574.
    Verdejo R and Mills NJ (2004b). Heel–shoe interactions and the durability of EVA foam running-shoe midsoles. Journal of Biomechanics, 37, 1379–1386.
    Verbitsky O, Mizrahi J, Voloshin A, Treiger J and Lsakov E (1998). Shock transmission and fatigue in human running. Journal of Applied Biomechanics, 14, 300-310.
    Wilson JF (2007). Impact-induced fatigue of foamed polymers. Internal Journal of Impact Engineering, 23, 1370-1381.
    Wright IC, Neptune RR, van den Bogert AJ and Nigg BM (1998). Passive regulation of impact forces in heel-toe running. Clinical Biomechanics, 13, 521-531.

    下載圖示
    2011-07-29公開
    QR CODE