| 研究生: |
陳律安 Chen, Lu-An |
|---|---|
| 論文名稱: |
電腦水冷散熱系統之效益研究 A Study of Thermal Performance of the Computer Water-cooling System |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 田口方法 、熱阻 、液冷 、水冷 、散熱效益 |
| 外文關鍵詞: | Water-cooling, Liquid-cooling, Thermal Resistance, Thermal Performance, Taguchi Method |
| 相關次數: | 點閱:158 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
拜半導體技術進步之賜,使得電腦效能得以快速發展,但伴隨而來的高發熱量問題也日漸嚴重。為解決這個問題,本論文著手研究水冷散熱系統,以期待對於熱量問題的解決有所助益。
本論文共分為四個主題來做探討:(1) 水冷散熱系統各控制因子對散熱效益的影響力比較;(2) 氣冷、熱管與水冷散熱系統之散熱效益比較;(3) 桌上型電腦實際安裝水冷與氣冷散熱系統之散熱效益比較;(4) 考慮水冷散熱系統的參數設計,與散熱效益的變化情形。
研究結果顯示,各控制因子對散熱效益的影響力順序為:風扇轉速>水槽水量>管路內徑>管路長度>散熱膏k值>環境溫度,而水冷液種類與管路落差則是可忽略的。如果將此結果運用在市售電腦上,由電源線供電的筆記型電腦,雖然採用較小空間來設計散熱模組,侷限了一些控制因子之操作,但因配合提高風扇轉速,使得其散熱系統的系統熱阻仍可低於CPU降頻運轉中的桌上型電腦。另外,由電池供電的筆記型電腦,雖然必須降低風扇轉速來節約電力,但因配合CPU的降頻,使得其CPU穩態溫度仍可低於由電源線供電的筆記型電腦。
實驗結果也證實,散熱效益順序為:水冷>熱管>氣冷。且發現散熱系統之系統熱阻並非定值,而是隨著發熱模組消耗功率的增加而呈線性緩緩降低。
With the progress of semiconductor technology, the computer performance is promoted rapidly, but it's also becoming serious in the heat-dissipation problem. In order to solve this problem, this work studied the water-cooling system, which is expected to be helpful to the heat-dissipation of computer.
This thesis is partitioned into four subjects: (1) the influence comparison of different controlled parameters in a water-cooling system, (2) the comparison of thermal performance of air, heat-pipe and water cooling systems, (3) the comparison of thermal performance of water- and air-cooling systems in a personal computer, (4) the parameter design of water-cooling system and the related variation of thermal performance.
According to the analysis results, the influence sequence of controlled parameters on thermal performance is fan speed > amount of water in the tank > internal diameter of tube > length of tube > k value of thermal compound > ambient temperature, and the effects of coolant type and the height drop of tube could be ignored.
The analysis results can be applied to the real computers. Since the power-line-supported notebook uses very small space to design a cooling system, the varying ranges of controlled parameters will be limited. However, according to the analysis results, the thermal resistance of the cooling system could be lower than that of a CPU-frequency-decelerated desktop computer by increasing the fan speed. Besides, a battery-supplied notebook would save power by slowing down the fan speed, but its' steady CPU temperature could be lower than that of a power-line-supplied notebook by slowing down the CPU frequency.
It's also verified in the study that the sequence of thermal performance of cooling system is water-cooling > heat-pipe cooling > air-cooling. The thermal resistance of a cooling system isn't a fixed value, and it becomes smaller as the power consumption of CPU increases.
[1] Bert Topelt, Daniel Schuhmann, Frank Volkel and Esther Lam, “CPU家族史-二部曲, ” Tom's Hardware Guide, http://www.thg.com.tw/article_000088209.html#01.
[2] Bert Topelt, Daniel Schuhmann, Frank Volkel and Gary Cheng, “2005/2006處理器大評比,” Tom's Hardware Guide, http://www.thg.com.tw/article_000104100.html.
[3] Rao R. Tummala, 陳信文, 陳立軒, 林永森與陳志銘, “微系統構裝基礎原理,” 高立圖書, 2002/12初版, pp.221.
[4] Altezza, “創新的魅力-NEC的概念筆記本大賞,” PC Online, http:/big5.pconline.com.cn/b5/arch.pconline.com.cn/notebook/nb/10307/187282_6.html.
[5] C. Belady, “Cooling and Power Considerations for Semiconductors into the Next Century,” ISLPED’01, August 6-7, Huntington Beach, California, USA, 2001.
[6] R. C. Chu, U. P. Hwang and R. E. Simons, “Conduction Cooling for an LSI Package: A One-Dimensional Approach,” IBM J. RES. Develop., Vol.26, NO.1, January, 1982.
[7] Avram Bar-Cohen, “Thermal Management of Air- and Liquid-Cooled Multichip Modules,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. Chmt-10, NO.2, June, 1987.
[8] T. Y. Lee, James A. Andrews, Peter Chow and David Saums, “Compact Liquid Cooling System for Small, Moveable Electronic Equipment,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.15, NO.5, October, 1992.
[9] Marlin R. Vogel, “Liquid Cooling Performance for a 3-D Multichip Module and Miniature Heat Sink,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol.18, NO.1, March, 1995.
[10] Heinrich Baumann, Peter Heinemeyer, Wolfgang Staiger, Manfred Topfer, Katrin Unger and Dietmar Muller, “Optimized Cooling Systems for High-Power Semiconductor Devices,” IEEE Transactions on Industrial Electronics, Vol.48, NO.2, pp.298-306, 2001.
[11] Dan Faulker, Mehdy Khotan and Reza Shekarriz, “Practical Design of a 1000W/cm2 Cooling System,” 19th IEEE SEMI-THERM Symposium, pp.223-230, 2003.
[12] Tuckerman, D. B. and R. F. W. Pease, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Letters, Vol.2, No.5, pp.126-129, 1981.
[13] C. Perret et al, “Integration of Cooling Devices in Silicon Technology,” Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370). IEEE. Part Vol.3, 1999, pp.1780-6 Vol.3. Piscataway, NJ, USA.
[14] W. Nakayama, “Enhanced Heat Transfer in Tight Space-A Frontier for Thermal Management of Microelectronic Equipment,” Enhanced Heat Transfer, Vol.6, pp.121-133, 1999.
[15] S. G. Kandlikar and W. J. Grande, “Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling-Thermohydraulic Performance Enhancement and Fabrication Technology,” Heat Transfer Engineering, Vol.25, No.8, pp.5-16, 2004.
[16] Randall D. Dickinson, Shlomo Novotmy, Marlin Vogel and John Dunn, “A System Design Approach to Liquid-Cooled Microprocessors,” IEEE Inter Society Conference on Thermal Phenomena, pp.413-420, 2002.
[17] H. Y. Zhang, D. Pinjala, Y. K. Joshi, T. N. Wong and K. C. Toh, “Thermal Modeling and Design of Liquid Cooled Heat Sinks Assembled With Flip Chip Ball Gird Array Packages,” IEEE Electronic Components and Technology Conference, pp.431-437, 2003.
[18] J. M. Koo et al, “Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures,” Journal of Heat Transfer, Vol.127, pp.49-58, 2005.
[19] 徐瑞富, “以田口方法改善金線偏移之銲線製程問題,” 中原大學機械工程系碩士論文, 2005.
[20] 陳信華, “利用田口式動態訊雜比進行表面聲波氣體感測器之穩健設計,” 屏東科技大學機械工程系碩士論文, 2005.
[21] A Nyaluke, B. Nasser, H. R. Leep and H. R. Parsaei, “Rapid Prototyping Work Space Optimization,” Computer ind. Engng, Vol.31, No.1/2, pp.103-106, 1996.
[22] H. J. Jeea, E. Sachsb, “A Visual Simulation Technique For 3D Printing, ” Advances in Engineering Software, Vol.31, pp.97-106, 2000.
[23] 李輝煌, “田口方法-品質設計的原理與實務,” 高立圖書, 2005/8/5二版修訂.
[24] 蔡國山, “利用田口法于預力鋼襯混凝土管(PCCP)設計參數之分析,” 屏東科技大學機械工程系碩士論文, 2004.
[25] 盧俊廷, “薄殼射出成型品翹曲變形之量測與分析,” 中興大學應用數學系碩士論文, 2005.
[26] 黃光鵬, “新型工具機之幾何參數識別與精度分析,” 台灣科技大學機械工程系碩士論文, 2000.
[27] 李育嘉, “對堆疊式晶片構裝疲勞壽命之最佳化探討,” 成功大學工程科學系碩士論文, 2005.
[28] 國祥貿易, “工業溫度量測技巧,” http://www.lin.com.tw/products/Measuring/meainfo/meainfo1.htm.
[29] 吳貽, “煤的有效利用與電能轉化,” 科學月刊, 1976年5月, 第77期.
[30] 新時代油品有限公司, “溶水油(太古油) Soluble Oils,” http://newoil.myweb.hinet.net/19.htm.