| 研究生: |
林凡為 Lin, Fan-Wel |
|---|---|
| 論文名稱: |
以第一原理計算研究磺內酯添加劑對於固液界面膜改質之機制 Effect of 1,3-propane sultone (PS) on modification of solid electrolyte interphase (SEI) film: A first-principles study |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | SEI膜形成機制 、還原型添加劑 、磺內酯 |
| 外文關鍵詞: | SEI film formation mecahaniasm, 1,3-propane sultone, lithium ion battery |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對還原型添加劑磺內酯,1,3-propane sultone (PS) 對鋰離子電池固液界面(Solid Electrolyte Interphase, SEI)膜改質之機制,利用系統性的方法搭配第一原理計算,確認出PS分子穩定之還原狀態,考慮PS分子和環境分子的反應,並分析每一輪反應之產物還原性和反應性。此外將此系統性的方法套入常用電解液EC,並比較其差異。此系統性方法可做為判斷還原型添加劑之依據。
本研究第一部分主要在氣態條件下計算,PS和EC分子在氣態狀態下都不易行還原反應,但其中以PS分子較EC分子更容易行還原反應;考慮兩分子和鋰離子之反應,中性的EC分子較容易和鋰離子鍵結,而還原的PS有較大的趨勢和鋰離子鍵結,且都為自發反應;進一步考慮兩分子之鋰化合物和其他反應物之反應,推測出可能形成SEI膜之成分: (CH2CH2OCO2Li)EC、CH2CH2CH2(OSO2)Li-EC、(OCO2Li)EC 、CH2CH2CH2(OSO2)LiOSO2、(CH2CH2OCO2Li)PS、CH2CH2CH2(OSO2)Li-PS。
第二部分計算均在溶劑狀態下計算,考慮分子的還原反應為一次得到一個電子,在有添加PS分子之情況下,PS分子會優先還原於電解液EC,抑制EC分子分解後之產氣,且PS分子本身不容易還原分解為小分子或產生氣體,產物皆由PS-Li+和其他環境分子反應而成,且都為較大的分子,第三、四輪存在機率最高之產物皆不易進行後續的還原反應;無添加PS添加劑之條件下,還原之EC會分解為C2H4和CO32-兩個較小的分子,且產物皆由CO32-Li+和其他環境分子反應而成,且都以小分子為主,第三、四輪存在機率最高之產物皆容易再進行後續的還原反應。
藉由系統性的方法,提供選擇還原型添加劑的判斷依據,以PS添加劑為例,PS分子本身在行還原反應時不易分解成小分子或氣體,PS分子和其前期的產物有較大的還原能力,後期的產物不利後續的還原,且都為較大的分子;而EC分子之後期產物仍有還原能力,分解後之小分子仍會和鋰離子持續反應。推測此模擬之結果,添加PS分子之情況下,可以降低不可逆電容量之損失,且形成較薄且有效的SEI膜,並提升電池表現。
Systematic method was applied to investigated the effect of reductive-type additive, 1,3-propane sultone (PS) on the formation of solid electrolyte interphase (SEI) at lithium ion battery anode surface, carried by the density functional theory. The anode of graphite as the electron source where the molecules reduced. In the solvent state, the most stable reduction state of PS and electrolyte, EC were confirmed and as the initial reactants reacted with the environment supplies. With the addition of PS, the reduction of PS is prior to EC which would suppress the reduction of EC and decrease the generation of C2H4 gas. In addition, the lithiated compounds from PS- (Li+) are the primary products. The further products from PS- (Li+) are bigger than the products from the reduction of EC. The reduction ability of PS and PS-(Li+) from first and second reaction rounds are higher while the reduction ability of the products from third and fourth reaction are lower than that of EC. The beginning products show higher reduction abilities while the later products show lower reduction abilities, which would be the critical properties for reductive-type additive to form the effective SEI film.
[1] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, et al., "Design of electrolyte solutions for Li and Li-ion batteries: a review," Electrochimica Acta, vol. 50, pp. 247-254, 2004.
[2] E. Peled, "The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model," Journal of The Electrochemical Society, vol. 126, pp. 2047-2051, 1979.
[3] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, pp. 6332-6341, 2010.
[4] S. S. Zhang, "A review on electrolyte additives for lithium-ion batteries," Journal of Power Sources, vol. 162, pp. 1379-1394, 2006.
[5] G. Han, B. Li, Z. Ye, C. Cao, and S. Guan, "The Cooperative Effect of Vinylene Carbonate and 1, 3-Propane Sultone on the Elevated Temperature Performance of Lithium Ion Batteries," Int. J. Electrochem. Sci, vol. 7, pp. 12963-12973, 2012.
[6] T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, and Z. Ogumi, "Suppression of an alkyl dicarbonate formation in Li-ion cells," Journal of The Electrochemical Society, vol. 152, pp. A2046-A2050, 2005.
[7] G. H. Wrodnigg, J. O. Besenhard, and M. Winter, "Ethylene Sulfite as Electrolyte Additive for Lithium‐Ion Cells with Graphitic Anodes," Journal of The Electrochemical Society, vol. 146, pp. 470-472, 1999.
[8] N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, and S.-S. Kim, "Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode," Journal of Power Sources, vol. 161, pp. 1254-1259, 2006.
[9] G. Park, H. Nakamura, Y. Lee, and M. Yoshio, "The important role of additives for improved lithium ion battery safety," Journal of Power Sources, vol. 189, pp. 602-606, 2009.
[10] T. Yim, S. H. Kim, S.-G. Woo, K. Lee, J. H. Song, W. Cho, et al., "1, 3-Propanesultone as an effective functional additive to enhance the electrochemical performance of over-lithiated layered oxides," RSC Advances, vol. 4, pp. 19172-19176, 2014.
[11] X. Zuo, M. Xu, W. Li, D. Su, and J. Liu, "Electrochemical reduction of 1, 3-propane sultone on graphite electrodes and its application in Li-ion batteries," Electrochemical and solid-state letters, vol. 9, pp. A196-A199, 2006.
[12] G. Yongxing, Y. Zhenguo, T. Zhiyong, L. Xinhai, and W. Zhixing, "An advanced electrolyte for improving surface characteristics of LiMn 2 O 4 electrode," Journal of Power Sources, vol. 184, pp. 513-516, 2008.
[13] Y. Wang, S. Nakamura, M. Ue, and P. B. Balbuena, "Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate," Journal of the American Chemical Society, vol. 123, pp. 11708-11718, 2001.
[14] E. G. Leggesse and J.-C. Jiang, "Theoretical study of the reductive decomposition of 1, 3-propane sultone: SEI forming additive in lithium-ion batteries," Rsc Advances, vol. 2, pp. 5439-5446, 2012.
[15] C. Lee, W. Yang, and R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Physical review B, vol. 37, p. 785, 1988.
[16] A. D. Becke, "Density‐functional thermochemistry. III. The role of exact exchange," The Journal of chemical physics, vol. 98, pp. 5648-5652, 1993.
[17] P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, "Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields," The Journal of Physical Chemistry, vol. 98, pp. 11623-11627, 1994.
[18] S. Vosko, L. Wilk, and M. Nusair, "Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis," Canadian Journal of physics, vol. 58, pp. 1200-1211, 1980.
[19] K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, et al., "Gaussian 03, revision E. 01," Gaussian Inc, 2004.
[20] R. S. Mulliken, "Electronic population analysis on LCAO–MO molecular wave functions. I," The Journal of Chemical Physics, vol. 23, pp. 1833-1840, 1955.
[21] M. Cossi, N. Rega, G. Scalmani, and V. Barone, "Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model," Journal of computational chemistry, vol. 24, pp. 669-681, 2003.
[22] K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries," Chemical reviews, vol. 104, pp. 4303-4418, 2004.
[23] Y.-K. Han, K. Lee, S. C. Jung, and Y. S. Huh, "Computational screening of solid electrolyte interphase forming additives in lithium-ion batteries," Computational and Theoretical Chemistry, vol. 1031, pp. 64-68, 2014.
[24] J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, "Atomic and molecular electron affinities: photoelectron experiments and theoretical computations," Chemical reviews, vol. 102, pp. 231-282, 2002.
[25] K. Leung, "Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms," Chemical Physics Letters, vol. 568, pp. 1-8, 2013.
[26] S. Zhang, K. Xu, and T. Jow, "EIS study on the formation of solid electrolyte interface in Li-ion battery," Electrochimica acta, vol. 51, pp. 1636-1640, 2006.
[27] B. Simon and J.-P. Boeuve, "Rechargeable lithium electrochemical cell," ed: Google Patents, 1997.
[28] M. Xu, W. Li, and B. L. Lucht, "Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries," Journal of Power Sources, vol. 193, pp. 804-809, 2009.
[29] R. Chen, F. Wu, L. Li, Y. Guan, X. Qiu, S. Chen, et al., "Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries," Journal of Power Sources, vol. 172, pp. 395-403, 2007.
[30] R. McMillan, H. Slegr, Z. Shu, and W. Wang, "Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes," Journal of Power Sources, vol. 81, pp. 20-26, 1999.
[31] K. Leung and J. L. Budzien, "Ab initio molecular dynamics simulations of the initial stages of solid–electrolyte interphase formation on lithium ion battery graphitic anodes," Physical Chemistry Chemical Physics, vol. 12, pp. 6583-6586, 2010.
[32] K. Leung, Y. Qi, K. R. Zavadil, Y. S. Jung, A. C. Dillon, A. S. Cavanagh, et al., "Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies," Journal of the American Chemical Society, vol. 133, pp. 14741-14754, 2011.
[33] P. Ganesh, P. Kent, and D.-e. Jiang, "Solid–electrolyte interphase formation and electrolyte reduction at Li-ion battery graphite anodes: Insights from first-principles molecular dynamics," The Journal of Physical Chemistry C, vol. 116, pp. 24476-24481, 2012.
[34] M. H. Park, Y. S. Lee, H. Lee, and Y.-K. Han, "Low Li+ binding affinity: An important characteristic for additives to form solid electrolyte interphases in Li-ion batteries," Journal of Power Sources, vol. 196, pp. 5109-5114, 2011.
[35] D. R. Hartree, "The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods," in Mathematical Proceedings of the Cambridge Philosophical Society, 1928, pp. 89-110.
[36] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical Review, vol. 140, p. A1133, 1965.
[37] J. P. Perdew and W. Yue, "Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation," Physical review B, vol. 33, p. 8800, 1986.
[38] J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh, et al., "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol. 46, p. 6671, 1992.
[39] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, p. 3865, 1996.
[40] B. Hammer, L. B. Hansen, and J. K. Nørskov, "Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals," Physical Review B, vol. 59, p. 7413, 1999.
[41] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical review A, vol. 38, p. 3098, 1988.
[42] S. F. Boys, "Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1950, pp. 542-554.
[43] A. E. Reed, R. B. Weinstock, and F. Weinhold, "Natural population analysis," The Journal of Chemical Physics, vol. 83, pp. 735-746, 1985.
[44] R. F. Bader, Atoms in molecules: Wiley Online Library, 1990.
[45] R. P. Seward and E. C. Vieira, "The dielectric constants of ethylene carbonate and of solutions of ethylene carbonate in water, methanol, benzene and propylene carbonate," The Journal of Physical Chemistry, vol. 62, pp. 127-128, 1958.
[46] R. Payne and I. E. Theodorou, "Dielectric properties and relaxation in ethylene carbonate and propylene carbonate," The Journal of Physical Chemistry, vol. 76, pp. 2892-2900, 1972.
[47]Y. Chemyak, "Dielectric constant, dipole moment, and solubility parameters of some cyclic acid esters,"Journal of Chemical & Engineering Data, vol 51,pp.416-418,2006.
[48] D.A. McQuarrie and J.D.Simon, Physical chemistry: a molecular approach vol.1: University science books Sausalito,CA, 1997.