| 研究生: |
邰翰威 Tai, Han-Wei |
|---|---|
| 論文名稱: |
形狀記憶合金致動伺服控制與應用 Shape-Memory-Alloy Servo-Actuator Control and Application |
| 指導教授: |
張仁宗
Chang, R.J |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 形狀記憶合金 、類神經網路 、電流回授控制 |
| 外文關鍵詞: | shape memory alloy, neural network, current feedback control |
| 相關次數: | 點閱:112 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以「光機電系統控制研究室」研究多年的形狀記憶合金制動器系統為基礎,針對形狀記憶合金致動器量測FOD曲線建立遲滯模型,設計一驅動電路以放大電流,提供形狀記憶合金有較大的致動量。接著利用類神經網路當作位移估測器,而閉迴路控制將運用Inverse Preisach補償、PI control與位移估測器,進行電流回授控制,並藉由階梯狀的訊號、弦波訊號與變化類型的弦波,加以測試控制性能。
關鍵字:形狀記憶合金、類神經網路、電流回授控制
This thesis is based on the research of shape-memory-alloy actuator system developed by“OME System Lab”in recent years. For modeling a shape-memory-alloy actuator, the present approach is to measure FOD curve for establishing hysteresis model. A circuit is designed and implemented to drive shape memory alloy for higher displacement output. A neural network scheme is implemented as a displacement estimator. A closed-loop control with Inverse Preisach compensator, PI control, and displacement estimator under current feedback is implemented. The control performance of staircase, sinusoidal, and varying sinusoidal responses are tested.
Keyword: shape memory alloy, neural network and current feedback control
[1] K. K. Ahn and B. K. Nguyen, “Position Control of Shape Memory Alloys Actuators Using Self Tuning Fuzzy PID Controller,” International Journal of Control, Automation, and System, Vol. 4, No.6, pp. 756-762, 2006.
[2] T. Hasegawa and S. Majima, “A Control System to Compensate the Hysteresis by Preisach Model on SMA Actuator,” IEEE International Symposium on Micromechatronics and Human Science, pp. 171-176, 1998.
[3] N. Bizdoaca, H. Hamdan and D. Selisteanu, ”Fuzzy Logic Controller for a Shape Memory Alloy Tentacle Robotic Structure,” Proceedings of the IEEE Conference on Information & Commuation Technologies: from Theory to Applications, pp. 24-28, 2006.
[4] S. Majima, K. Kodama and T. Hasegawa, “Modeling of Shape Memory Alloy Actuator and Tracking Control System with the Model,” IEEE Transactions on Control Systems Technology, Vol. 9, No. 1, 2001.
[5] N. Ma, G. Song and H-J Lee, “Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks,” Smart Materials and Structures, Vol. 5049, pp. 46-55, 2003.
[6] G. Song, V. Chaudhry and C. Batur, “A Neural Network Inverse Model for a Shape Memory Alloy Wire Acturtor,” Journal of Intelligent Material Systems and Structures, Vol. 14, pp. 371-377, 2003.
[7] G. Song, V. Chaudhry and C. Batur, “Precision tracking control of shape memory alloy acturtors using neural networks and a sliding-mode based robust controller,” Smart Materials and Structures, 12, pp. 223-231, 2003.
[8] K. Ikuta, M. Tsukamoto and S. Hirose, “Shape Memory Alloy Servo Acutator System with Electric Resistance Feedback Application for Active Endoscope,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Vol. 1, pp. 470-30, 1998.
[9] R. Mukherjee, Thomas F. Christian and Richard A. Thiel, “An Actuation System for the Control of Multiple Shape Memory Alloy Actuators,” Sensors and Actuators A: Physical, 55(2-3): 185-192, 1996.
[10] S. M. Dutta, F. H. Ghorbel and J. B. Dabney,” Modeling and Control of a Shape Memory Alloy Actuator,” IEEE International Symposium on Intelligent Control Limassol, pp. 1007-1012, 2005.
[11] A. Kumagai, T. I. Liu and P. Hozian, “Control of shape memory alloy actuators with a neuro-fuzzy feedforward model element,” Journal of Intelligent Manufacturing, 17, 45-56, 2006.
[12] C. H. Joshi, “Shape Memory Alloys, New materials,” pp: 26-72, 1992.
[13] K. Tanaka, “A Thermomechanical Sketch of Shape Memory Effect: One-Dimensional Tensile Behavior,” Res Mechanica, Vol. 18, No. 3, pp. 251-263, 1986.
[14] L. C. Brinson, “One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable,” Journal of Intelligent Material Systems and Structure, Vol. 4, 1993.
[15] 顧鴻壽等,“形狀記憶合金講習會”,工業技術研究院工業材料研究所,中華民國七十七年十月。
[16] 舟久保 熙康,“形狀記憶合金”,復漢出版社,1999。
[17] 廖南吉,“形狀記憶合金與用途”,南臺出版社,1988。
[18] 任勇生,王世文,李俊寶,沈應鵬,“形狀記憶合金在結構主被動震動控制中的應用”,力學進展,Vol 29,pp. 19-33,1999。
[19] J. L. Pons, D. Reynaerts, J. Peirs, R. Ceres, and H. VanBrussel, “Comparison of Different Control Approaches to Drive SMA Actuators,” ICAR’97, pp. 819-824.
[20] K. Ikuta, “Mathematical Model And Experimental Verification of Shape Memory Alloy for Design Micro Actuator,” IEEE MicroElectro Mechanical Systems, pp. 103-108, 1991.
[21] D. R. Madill, “Modeling and L2-Stability of a Shape Memory Alloy Position Control System,”IEEE Transaction on Control System Technology, Vol.6, pp. 473-481, 1998.
[22] R. B. Gorbet, “Preisach Model Identification of a Two-Wire SMA Actuator,” IEEE International Conference on Robotics and Automation, pp.2161-2167, 1998.
[23] P. Ge, M. Jouaneh, “Tracking Control of a Piezoceramic Actuator,” IEEE Transaction on Control System Technology, Vol.4, pp. 209-216, 1996.
[24] 机啟成,「形狀記憶合金驅動生醫用高分子微夾持系統之發展」,國立成功大學機械工程學系碩士論文,中華民國九十三年六月。
[25] 施博偉,「形狀記憶合金驅動微夾持器之應用」,國立成功大學機械工程學系碩士論文,中華民國九十四年七月。
[26] 鄭志羿,「微夾持器力量控制之發展」,國立成功大學機械工程學系碩士論文,中華民國九十五年六月。
[27] www.datasheetcatalog.com/datasheet/H/HA17741.shtml
[28] A. S. Sedra, K.C. Smith, “Microelectronic Circuits (Oxford Series in Electrical Engineering),” Oxford University Press, 1997.
[29] www.mathworks.com/
[30] 張斐章、張麗秋,“ 類神經網路”,東華書局,2005年9月。