簡易檢索 / 詳目顯示

研究生: 郭孟憲
Kuo, Meng-Hsien
論文名稱: 彈性長度的格雷互補集合之建構方法
Constructions of Golay Complementary Sets with Flexible Lengths
指導教授: 陳昭羽
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 60
中文關鍵詞: 格雷互補集合完全互補碼互補配對尖峰平均功率比格雷互補對
外文關鍵詞: Golay complementary set, complete complementary code, complementary mate, peak-to-average power ratio, Golay complementary pair
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,我們提出了利用已知的格雷互補對,來建構格雷互補集合的新方法。不同於現有的文獻只能加入至多三個位元,並由現有的序列以及其互補配對來組合出格雷互補集合。在我們的方法中,序列集合的長度可以很有彈性地調整。與目前的文獻中建構方法相比,我們是第一個提出可以加入一至六個位元的建構方法。而用來建構出格雷互補集合的格雷互補對也不需要採用其互補配對。除此之外,我們也提出了由完全互補碼建構格雷互補集合的建構法。藉由這兩個方式所建構出來的格雷互補集合,其尖峰平均功率比具有理論上界。對於我們提出的建構方法,產生的序列可以補足一些過去文獻中沒有的序列長度,也更加提高了在實際系統上應用的可能性。

    In this thesis, new constructions of Golay complementary set (GCSs) are proposed based on Golay complementary pair (GCP). Via adding one to six bits at the beginning or at the end of two GCPs, the generated GCS has larger set size and longer sequence length. Compared to previous results in the literature, our methods are constructions with more bits added to GCPs. The sequence length is very flexible. Compared with previous methods, this thesis is the first work to propose constructions of GCSs width more available lengths. Furthermore, we propose constructions of GCSs based on concatenated complete complementary codes (CCCs) and GCPs. The flexible sequence lengths and set size of our constructed GCSs will increase more possible applications in practical systems.

    摘要v Abstract vii 致謝ix Table of Contents xi List of Tables xiii List of Abbreviations xv List of Symbols xvii Dedication xix 1 Introduction 1 2 Background and Definitions 3 2.1 Basic Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 OFDM Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Golay Complementary Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.5 Complete Complementary Code . . . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Peak-to-Average Power Ratio Reduction . . . . . . . . . . . . . . . . . . . . 7 2.7 Generalized Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.8 Further Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Literature Review 11 3.1 A Novel Construction of Complementary Sets With Flexible Lengths Based on Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 xi Contents 3.2 Complementary Sets of Sequences of Lengths Non-Power-of-Two . . . . . . 14 4 Constructions of Golay Complementary Sets with Flexible Lengths 17 4.1 Constructions of Golay Complementary Sets Based on GCPs . . . . . . . . . 17 4.2 Constructions of GCSs based on CCCs . . . . . . . . . . . . . . . . . . . . . 44 5 Conclusion 55 Bibliography 57

    [1] M. J. E. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol. IT-7, pp. 82–87,
    Apr. 1961.
    [2] C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory,
    vol. IT-18, pp. 644–652, Sep. 1972.
    [3] G. Welti, “Quaternary codes for pulsed radar,” IRE Trans. Inf. Theory, vol. IT-6, no. 3,
    pp. 400–408, Jun. 1960.
    [4] P. Spasojevic and C. N. Georghiades, “Complementary sequences for ISI channel estimation,”
    IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1145–1152, Mar. 2001.
    [5] J. M. Groenewald and B. T. Maharaj, “MIMO channel synchronization using Golay
    complementary pairs,” in Proc. AFRICON 2007, Windhoek, South Africa, Sep. 2007,
    pp. 1–5.
    [6] S. Boyd, “Multitone signals with low crest factor,” IEEE Trans. Circuits Syst., vol.
    CAS-33, no. 10, pp. 1018–1022, Oct. 1986.
    [7] B. M. Popovi´c, “Synthesis of power efficient multitone signals with flat amplitude spectrum,”
    IEEE Trans. Commun., vol. 39, no. 7, pp. 1031–1033, Jul. 1991.
    [8] R. van Nee, “OFDM codes for peak-to-average power reduction and error correction,”
    in Proc. IEEE Global Telecommun. Conf., London, U.K., Nov. 1996, pp. 740–744.
    [9] K. G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,”
    IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 104–120, Jan. 2000.
    [10] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary
    sequences, and Reed-Muller codes,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp.
    2397–2417, Nov. 1999.
    [11] K.-U. Schmidt, “Complementary sets, generalized Reed-Muller codes, and power control
    for OFDM,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 808–814, Feb. 2007.
    [12] M. G. Parker and C. Tellambura, “A construction for binary sequence sets with low
    peak-to-average power ratio,” Department of Informatics, University of Bergen, Norway,
    2003. [Online]. Available: http://www.ii.uib.no/ matthew/ConstructReport.pdf.
    [13] W. Chen and C. Tellambura, “Identifying a class of multiple shift complementary sequences
    in the second order cosets of the first order Reed-Muller codes,” in Proc. IEEE
    Int. Conf. Commun., Seoul, Korea, May 2005, pp. 618–621.
    [14] C.-Y. Chen, C.-H.Wang, and C.-C. Chao, “Complementary sets and Reed-Muller codes
    for peak-to-average power ratio reduction in OFDM,” in Proc. 16th Int. Symp. AAECC,
    LNCS 3857, Las Vegas, NV, Feb. 2006, pp. 317–327.
    [15] N. Suehiro and M. Hatori, “N-shift cross-orthogonal sequences,” IEEE Trans. Inf. Theory,
    vol. 34, pp. 143–146, Jan. 1988.
    [16] S.-M. Tseng and M. R. Bell, “Asynchronous multicarrier DS-CDMA using mutually
    orthogonal complementary sets of sequences,” IEEE Trans. Commun., vol. 48, pp. 53–
    59, Jan. 2000.
    [17] H.-H. Chen, J.-F. Yeh, and N. Suehiro, “A multicarrier CDMA architecture based on
    orthogonal complete complementary codes for new generations of wideband wireless
    communications,” IEEE Commun. Mag., vol. 39, pp. 126–134, Oct. 2001.
    [18] C.-Y. Chen, Y.-J. Min, K.-Y. Lu, and C.-C. Chao, “Cell search for cell-based OFDM
    systems using quasi complete complementary codes,” in Proc. IEEE Int. Conf. Commun.,
    Beijing, China, May 2008, pp. 4840–4844.
    [19] Y. Li and W. B. Chu, “More Golay sequences,” IEEE Trans. Inf. Theory, vol. 51, no. 3,
    pp. 1141–1145, Mar. 2005.
    [20] Z. Liu, U. Parampalli, and Y. L. Guan, “On even-period binary Z-complementary pairs
    with large ZCZs,” IEEE Signal Process. Lett., vol. 21, no. 3, pp. 284–287, Mar. 2014.
    [21] ——, “Optimal odd-length binary Z-complementary pairs,” IEEE Trans. Inf. Theory,
    vol. 60, no. 9, pp. 5768–5781, Sep. 2014.
    [22] F. Fiedler, J. Jedwab, and M. G. Parker, “A framework for the construction of Golay
    sequences,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3114–3129, Jul. 2008.
    [23] C.-Y. Chen, “Complementary sets of non-power-of-two length for peak-to-average
    power ratio reduction in OFDM,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7538–
    7545, Dec. 2016.
    [24] C. Y. Chen, “A novel construction of complementary sets with flexible lengths based
    on boolean functions,” IEEE Commun. Lett., vol. 22, no. 2, pp. 260–263, Feb 2018.
    [25] A.-R. Adhikary and S. Majhi, “New constructions of complementary sets of sequences
    of lengths non-power-of-two,” IEEE Commun. Lett., pp. 1–1, Apr. 2019.
    [26] C. Han, N. Suehiro, and T. Hashimoto, “N-shift cross-orthogonal sequences and complete
    complementary codes,” in Proc. IEEE Int. Symp. Inf. Theory, Nice, France, Jun.
    2007, pp. 2611–2615.
    [27] ——, “A systematic framework for the construction of optimal complete complementary
    codes,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6033–6042, Sept 2011.
    [28] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes. Amsterdam,
    The Netherlands: North-Holland, 1977.
    [29] A.-R. Adhikary, S. Majhi, Z. Liu, and Y.-L. Guan, “New sets of even-length binary
    z-complementary pairs with asymptotic ZCZ ratio of 3/4,” IEEE Signal Process. Lett.,
    vol. 25, no. 7, pp. 970–973, Jul 2018.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE