| 研究生: |
李定原 Lee, Ting-Yuan |
|---|---|
| 論文名稱: |
以硫醇-烯點擊化學反應原位合成含聚離子液體網狀電解質及其於鋰離子電池之應用 In-Situ Synthesized Poly(ionic liquid) Network Electrolytes through Thiol-Ene Click Chemistry for Lithium Ion Batteries |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 聚離子液體 、硫醇—烯點擊化學 、固態電解質 、原位生成法 、鋰離子電池 |
| 外文關鍵詞: | Poly(ionic liquid), Thiol-ene click chemistry, Solid polymer electrolyte |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成以PEG為主體的咪唑基雙正離子型離子液體交聯劑,藉由紫外光觸發硫醇—烯點擊化學反應在鋰金屬負極上原位生成高分子網絡,並透過塑化劑種類以及聚合度的調控,開發出兩系列(寡聚物系列(O)和丁二腈系列(S))兼具長效循環與穩定效能的鋰電池固態電解質。製程上使用紫外光觸發的原位聚合法不僅不須添加額外的有機溶劑也強化了電解質和電極之間的介面相容性、減少製程複雜度,使其符合當今社會所追求綠色化學、友善環境的標準。隨後,以NMR、MALDI-TOF圖譜確認所合成的[VIm-PEG400-VIm] [TFSI]離子液體結構正確無誤;藉由DSC、XRD判斷電解質為無定型(Amorphous)態;透過TGA、LSV證實材料熱穩定性良好,O1.5-33截止電壓大於5.3 V、S1.6大於4.2 V;機械性質的評估則藉由DMA測得當硫醇基:乙烯基接近1:1.5時具有最佳的抗壓強度(~0.4 Mpa)。在5%應變量下,O系列壓縮彈性模數介於0.002 ~ 0.06 Mpa,S系列則介於0.04 ~ 0.35 MPa之間;因為丁二腈室溫下的高傳導性質,室溫下O1.5-33為0.1 mS/cm、S1.6為1.1 mS/cm;60 C時,O1.5-33為0.65 mS/cm、S1.6達3.5 mS/cm。藉此設定O1.5-33於60 C下測試,S1.6則可於室溫下進行。充放電測試兩者於低速率下放電情形良好,0.2C的放電容量分別為162.2、153.5 mAh/g;高速測試下,高傳導度的S1.6放電容量較高,1C放電量為133.4 mAh/g,O1.5-33為67.0 mAh/g;長效0.2C測試100圈後,O1.5-33的電容保留率達98 %,S1.6在50圈後開始大幅衰退,無法運行至100圈。以充放電測試結果可歸納出O1.5-33材料適合高溫長效循環,S1.6適合室溫高速充放電。經由SEM探究SEI層生成現象後發現O1.5-33的負極表面形態為緻密片狀堆疊、S1.6為不均勻塊狀堆疊,可證明緻密平均的SEI層有助於長效電池循環、抑制鋰支晶不規則生長,此結果可歸因於單邊乙烯基PEO的添加有助於增加鏈段活動度進而提升SEI層穩定性。整體而言,本研究設計出一新穎交聯劑結構同時包攬PEO、離子液體特性,藉由原位聚合降低一般製程的繁雜步驟,加上所製備出的固態電解質具備極佳的熱穩定性、電化學穩定性、高機械強度以及高充放電電容量,充分顯示其量化生產優勢並且有機會克服現階段液態電解質所衍生出的安全性缺陷。
In 21st centuries, lithium ion battery has been viewed as an indispensable energy carrier to replace traditional internal combustion engine. Investigating a high safety, high energy density, and stable solid-state electrolytes to replace the commercial flammable liquid electrolyte is the main objective in this research. In this thesis, two series of network solid polymer electrolytes (SPEs) composed of dicationic imidazolium-based poly(ionic liquid) (PIL) vinyl crosslinker and pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) with an oligomeric plasticizer (PEGDME) or a plastic crystal (SN) additive were obtained via in-situ thiol-ene click photopolymerization on lithium anode. The as-mentioned in-situ technique featuring mild reaction condition, solvent-free formation, and eco-friendly process diminished the interfacial contact issues and process complexity. The molecular weight distribution and purity of VIm-PEG400-VIm PIL were characterized by NMR and MALDI-TOF. For electrochemical property, the ionic conductivities at 60 C varied from 0.51 to 0.65 mS cm-1 for the SPEs with PEGDME, while those with SN ranging from 1.4 to 3.5 mS cm-1. For mechanical property, the compressive elastic moduli at 5 % of stain varied from 0.002 to 0.06 MPa in PEGDME SPEs, however, higher moduli ranging from 0.04 to 0.35 MPa were found in SN series SPEs for its higher degree of polymerization. Taking these properties into consideration, O1.5-33 and S1.6 exhibited the most desirable characteristics among the samples. Both of their thiol group to vinyl group molar ratio were about 1:1.5, while O1.5-33 was inclusive of 33 % molar ratio of PEG MEMA, comparing with the all crosslinker polymer content – S1.6. In long term cycling performance, a high discharge capacity retention of 98 % was observed after 100 cycles at 0.2 C in O1.5-33 owing to its higher segmental motion, which suppresses the growth of lithium dendrites. In contrast, S1.6 maintained stable discharge capacity among 0.1 C to 1C at room temperature for its outstanding ionic conductivity in various rate test (153 mAh g-1 at 0.2 C and 133 mAh g-1 at 1 C). Briefly, both the SPEs, O1.5-33 and S1.6, containing poly(ionic liquid) crosslinker synthesized in this research demonstrated their potentials to be suitable candidates in lithium ion batteries.
[1] S. Dühnen, J. Betz, M. Kolek, R. Schmuch, M. Winter, T. Placke, Toward Green Battery Cells: Perspective on Materials and Technologies, Small Methods. 4 (2020) 2000039.
[2] J. Sun, M. Li, J.A.S. Oh, K. Zeng, L. Lu, Recent advances of bismuth based anode materials for sodium-ion batteries, Materials Technology. 33 (2018) 563–573.
[3] K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, N.P. Dasgupta, Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes, Journal of Materials Chemistry A. 5 (2017) 11671–11681.
[4] Y.C. Tseng, S.H. Hsiang, C.H. Tsao, H. Teng, S.S. Hou, J.S. Jan, In situformation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries, Journal of Materials Chemistry A. 9 (2021) 5796–5806.
[5] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin. 15 (1980) 783–789.
[6] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society. 144 (1997) 1188–1194.
[7] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today. 18 (2015) 252–264.
[8] J. Zhang, L. Zhang, F. Sun, Z. Wang, An Overview on Thermal Safety Issues of Lithium-ion Batteries for Electric Vehicle Application, IEEE Access. 6 (2018) 23848–23863.
[9] M. Ue, Y. Sasaki, Y. Tanaka, M. Morita, Nonaqueous Electrolytes with Advances in Solvents, in: 2014: pp. 93–165.
[10] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy and Environment. 1 (2016) 18–42.
[11] Y. Tian, T. Shi, W.D. Richards, J. Li, J.C. Kim, S.H. Bo, G. Ceder, Compatibility issues between electrodes and electrolytes in solid-state batteries, Energy and Environmental Science. 10 (2017) 1150–1166.
[12] M. Montanino, S. Passerini, G.B. Appetecchi, Electrolytes for rechargeable lithium batteries, in: Rechargeable Lithium Batteries, Elsevier, 2015: pp. 73–116.
[13] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature. 414 (2001) 359–367.
[14] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews. 104 (2004) 4303–4418.
[15] T. Richard, J.K. Xu, O. Borodin, M. Ue, Electrolytes for Lithium and Lithium-Ion Batteries, Springer New York, New York, NY, 2014.
[16] J. Vetter, H. Buqa, M. Holzapfel, P. Novák, Impact of co-solvent chain branching on lithium-ion battery performance, Journal of Power Sources. 146 (2005) 355–359.
[17] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O 2 , and Li–S, Energy & Environmental Science. 8 (2015) 1905–1922.
[18] S.E. Sloop, J.K. Pugh, S. Wang, J.B. Kerr, K. Kinoshita, Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions, Electrochemical and Solid-State Letters. 4 (2001) A42.
[19] B. Fahys, M. Herlem, Lithium nitrate and lithium trifluoromethanesulfonate ammoniates for electrolytes in lithium batteries, Journal of Power Sources. 34 (1991) 183–188.
[20] J. Foropoulos, D.D. DesMarteau, Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH, Inorganic Chemistry. 23 (1984) 3720–3723.
[21] J.S. Gnanaraj, M.D. Levi, Y. Gofer, D. Aurbach, M. Schmidt, LiPF[sub 3](CF[sub 2]CF[sub 3])[sub 3]: A Salt for Rechargeable Lithium Ion Batteries, Journal of The Electrochemical Society. 150 (2003) A445.
[22] V. Sharova, A. Moretti, T. Diemant, A. Varzi, R.J. Behm, S. Passerini, Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries, Journal of Power Sources. 375 (2018) 43–52.
[23] X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel Polymer Electrolytes for Electrochemical Energy Storage, Advanced Energy Materials. 8 (2018) 1702184.
[24] D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects, Chem. 5 (2019) 2326–2352.
[25] I. Osada, H. de Vries, B. Scrosati, S. Passerini, Ionic-Liquid-Based Polymer Electrolytes for Battery Applications, Angewandte Chemie International Edition. 55 (2016) 500–513.
[26] Y. Zhu, S. Xiao, Y. Shi, Y. Yang, Y. Hou, Y. Wu, A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries, Advanced Energy Materials. 4 (2014) 1300647.
[27] H.-J. Ha, E.-H. Kil, Y.H. Kwon, J.Y. Kim, C.K. Lee, S.-Y. Lee, UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries, Energy & Environmental Science. 5 (2012) 6491.
[28] H. Li, X.-T. Ma, J.-L. Shi, Z.-K. Yao, B.-K. Zhu, L.-P. Zhu, Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries, Electrochimica Acta. 56 (2011) 2641–2647.
[29] W. Li, Y. Wu, J. Wang, D. Huang, L. Chen, G. Yang, Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery, European Polymer Journal. 67 (2015) 365–372.
[30] P.L. Kuo, C.A. Wu, C.Y. Lu, C.H. Tsao, C.H. Hsu, S.S. Hou, High performance of transferring lithium ion for polyacrylonitrile- interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte, ACS Applied Materials and Interfaces. 6 (2014) 3156–3162.
[31] C.H. Tsao, P.L. Kuo, Poly(dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery, Journal of Membrane Science. 489 (2015) 36–42.
[32] F. Baskoro, H.Q. Wong, H.J. Yen, Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery, ACS Applied Energy Materials. 2 (2019) 3937–3971.
[33] M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, I. Shinohara, High lithium ionic conductivity of polymeric solid electrolytes, Die Makromolekulare Chemie, Rapid Communications. 2 (1981) 741–744.
[34] C. Fasciani, S. Panero, J. Hassoun, B. Scrosati, Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries, Journal of Power Sources. 294 (2015) 180–186.
[35] V. Vishwakarma, A. Jain, Enhancement of thermal transport in Gel Polymer Electrolytes with embedded BN/Al2O3 nano- and micro-particles, Journal of Power Sources. 362 (2017) 219–227.
[36] J. Liu, X. Wu, J. He, J. Li, Y. Lai, Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery, Electrochimica Acta. 235 (2017) 500–507.
[37] J.Y. Song, Y.Y. Wang, C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, Journal of Power Sources. 77 (1999) 183–197.
[38] Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue, F. Wang, Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy, Electrochimica Acta. 41 (1996) 1443–1446.
[39] K. Yang, X. Ma, K. Sun, Y. Liu, F. Chen, Electrospun octa(3-chloropropyl)-polyhedral oligomeric silsesquioxane-modified polyvinylidene fluoride/poly(acrylonitrile)/poly(methylmethacrylate) gel polymer electrolyte for high-performance lithium ion battery, Journal of Solid State Electrochemistry. 22 (2018) 441–452.
[40] M. Zhu, J. Wu, Y. Wang, M. Song, L. Long, S.H. Siyal, X. Yang, G. Sui, Recent advances in gel polymer electrolyte for high-performance lithium batteries, Journal of Energy Chemistry. 37 (2019) 126–142.
[41] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer. 14 (1973) 589.
[42] J. Kärger, Fast Ion Transport in Solids, Zeitschrift Für Physikalische Chemie. 189 (1995) 274–275.
[43] G.S. MacGlashan, Y.G. Andreev, P.G. Bruce, Structure of the polymer eleotrolyte poly(ethylene oxide)6:LiAsF6, Nature. 398 (1999) 792–794.
[44] W.H. Meyer, Polymer Electrolytes for Lithium-Ion Batteries, Advanced Materials. 10 (1998) 439–448.
[45] R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons, Materials Horizons. 3 (2016) 487–516.
[46] L. Porcarelli, C. Gerbaldi, F. Bella, J.R. Nair, Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries, Scientific Reports. 6 (2016) 1–14.
[47] D.G. Mackanic, X. Yan, Q. Zhang, N. Matsuhisa, Z. Yu, Y. Jiang, T. Manika, J. Lopez, H. Yan, K. Liu, X. Chen, Y. Cui, Z. Bao, Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors, Nature Communications. 10 (2019) 1–11.
[48] S. Choudhury, Z. Tu, A. Nijamudheen, M.J. Zachman, S. Stalin, Y. Deng, Q. Zhao, D. Vu, L.F. Kourkoutis, J.L. Mendoza-Cortes, L.A. Archer, Stabilizing polymer electrolytes in high-voltage lithium batteries, Nature Communications. 10 (2019) 1–11.
[49] H.J. Ha, Y.H. Kwon, J.Y. Kim, S.Y. Lee, A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery, in: Electrochimica Acta, Elsevier Ltd, 2011: pp. 40–45.
[50] A. Abouimrane, P.S. Whitfield, S. Niketic, I.J. Davidson, Investigation of Li salt doped succinonitrile as potential solid electrolytes for lithium batteries, Journal of Power Sources. 174 (2007) 883–888.
[51] R. Yang, S. Zhang, L. Zhang, W. Liu, Electrical properties of composite polymer electrolytes based on PEO-SN-LiCF3SO3, International Journal of Electrochemical Science. 8 (2013) 10163–10169.
[52] D. Zhou, Y.-B. He, R. Liu, M. Liu, H. Du, B. Li, Q. Cai, Q.-H. Yang, F. Kang, In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries, Advanced Energy Materials. 5 (2015) 1500353.
[53] L.Z. Fan, X.L. Wang, F. Long, X. Wang, Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer, Solid State Ionics. 179 (2008) 1772–1775.
[54] M. Echeverri, N. Kim, T. Kyu, Ionic conductivity in relation to ternary phase diagram of poly(ethylene oxide), succinonitrile, and lithium bis(trifluoromethane)sulfonimide blends, Macromolecules. 45 (2012) 6068–6077.
[55] M.I. Alomari, Conformational Relative Stability and Thermal Properties of Succinonitrile in Gas and Condensed Phases: Using CCSD and DFT Calculations, ChemistrySelect. 5 (2020) 8078–8085.
[56] G. Yang, Y. Song, Q. Wang, L. Zhang, L. Deng, Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries, Materials & Design. 190 (2020) 108563.
[57] A.K. Tripathi, Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery, Materials Today Energy. 20 (2021) 100643.
[58] P. Walden, Molecular weights and electrical conductivity of several fused salts, Bull. Acad. Imper. Sci. 8 (1914).
[59] C. Dworak, S.C. Ligon, R. Tiefenthaller, J.J. Lagref, R. Frantz, Z.M. Cherkaoui, R. Liska, Imidazole-based ionic liquids for free radical photopolymerization, Designed Monomers and Polymers. 18 (2015) 262–270.
[60] M.D. Green, T.E. Long, Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies, Polymer Reviews. 49 (2009) 291–314.
[61] A. Arslan, S. Kıralp, L. Toppare, A. Bozkurt, Novel Conducting Polymer Electrolyte Biosensor Based on Poly(1-vinyl imidazole) and Poly(acrylic acid) Networks, Langmuir. 22 (2006) 2912–2915.
[62] H. Bai, H. Wang, J. Zhang, J. Zhang, S. Lu, Y. Xiang, High temperature polymer electrolyte membrane achieved by grafting poly(1-vinylimidazole) on polysulfone for fuel cells application, Journal of Membrane Science. 592 (2019) 117395.
[63] B. Yang, G. Yang, Y.-M. Zhang, S.X.-A. Zhang, Recent advances in poly(ionic liquid)s for electrochromic devices, Journal of Materials Chemistry C. 9 (2021) 4730–4741.
[64] L. Porcarelli, A.S. Shaplov, M. Salsamendi, J.R. Nair, Y.S. Vygodskii, D. Mecerreyes, C. Gerbaldi, Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries, ACS Applied Materials & Interfaces. 8 (2016) 10350–10359.
[65] Y. Yu, F. Lu, N. Sun, A. Wu, W. Pan, L. Zheng, Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries, Soft Matter. 14 (2018) 6313–6319.
[66] J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits, Physical Review A. 42 (1990) 7355–7367.
[67] C. Brissot, M. Rosso, J.N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells, Journal of Power Sources. 81 (1999) 925–929.
[68] Y. Lu, K. Korf, Y. Kambe, Z. Tu, L.A. Archer, Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries, Angewandte Chemie International Edition. 53 (2014) 488–492.
[69] X. Li, Y. Zheng, Q. Pan, C.Y. Li, Polymerized Ionic Liquid-Containing Interpenetrating Network Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries, ACS Applied Materials & Interfaces. 11 (2019) 34904–34912.
[70] Y. Li, K.W. Wong, Q. Dou, W. Zhang, K.M. Ng, Improvement of Lithium-Ion Battery Performance at Low Temperature by Adopting Ionic Liquid-Decorated PMMA Nanoparticles as Electrolyte Component, ACS Applied Energy Materials. 1 (2018) 2664–2670.
[71] Z. Li, H.-X. Xie, X.-Y. Zhang, X. Guo, In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries, Journal of Materials Chemistry A. 8 (2020) 3892–3900.
[72] S. Kim, J. Ryu, J. Rim, D. Hong, J. Kang, S. Park, Vinyl-Integrated In Situ Cross-Linked Composite Gel Electrolytes for Stable Lithium Metal Anodes, ACS Applied Energy Materials. 4 (2021) 2922–2931.
[73] V. Vijayakumar, M. Ghosh, M. Kurian, A. Torris, S. Dilwale, M. v. Badiger, M. Winter, J.R. Nair, S. Kurungot, An In Situ Cross‐Linked Nonaqueous Polymer Electrolyte for Zinc‐Metal Polymer Batteries and Hybrid Supercapacitors, Small. 16 (2020) 2002528.
[74] E.T. Röchow, M. Coeler, D. Pospiech, O. Kobsch, E. Mechtaeva, R. Vogel, B. Voit, K. Nikolowski, M. Wolter, In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems, Polymers. 12 (2020) 1707.
[75] H. Duan, Y.-X. Yin, X.-X. Zeng, J.-Y. Li, J.-L. Shi, Y. Shi, R. Wen, Y.-G. Guo, L.-J. Wan, In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries, Energy Storage Materials. 10 (2018) 85–91.
[76] W. Yao, Q. Zhang, F. Qi, J. Zhang, K. Liu, J. Li, W. Chen, Y. Du, Y. Jin, Y. Liang, N. Liu, Epoxy containing solid polymer electrolyte for lithium ion battery, Electrochimica Acta. 318 (2019) 302–313.
[77] D. Zhou, Y.-B. He, Q. Cai, X. Qin, B. Li, H. Du, Q.-H. Yang, F. Kang, Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery, J. Mater. Chem. A. 2 (2014) 20059–20066.
[78] Y. Cui, X. Liang, J. Chai, Z. Cui, Q. Wang, W. He, X. Liu, Z. Liu, G. Cui, J. Feng, High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis, Advanced Science. 4 (2017) 1700174.
[79] X. Cao, P. Zhang, N. Guo, Y. Tong, Q. Xu, D. Zhou, Z. Feng, Self-healing solid polymer electrolyte based on imine bonds for high safety and stable lithium metal batteries, RSC Advances. 11 (2021) 2985–2994.
[80] A.B. Lowe, Thiol-ene “click” reactions and recent applications in polymer and materials synthesis, Polym. Chem. 1 (2010) 17–36.
[81] B.H. Northrop, R.N. Coffey, Thiol–Ene Click Chemistry: Computational and Kinetic Analysis of the Influence of Alkene Functionality, Journal of the American Chemical Society. 134 (2012) 13804–13817.
[82] K.W.E. Sy Piecco, A.M. Aboelenen, J.R. Pyle, J.R. Vicente, D. Gautam, J. Chen, Kinetic Model under Light-Limited Condition for Photoinitiated Thiol–Ene Coupling Reactions, ACS Omega. 3 (2018) 14327–14332.
[83] C. Xuan, S. Gao, Y. Wang, Q. You, X. Liu, J. Liu, R. Xu, K. Yang, S. Cheng, Z. Liu, Q. Guo, In-situ generation of high performance thiol-conjugated solid polymer electrolytes via reliable thiol-acrylate click chemistry, Journal of Power Sources. 456 (2020) 228024.
[84] H. Wang, Q. Wang, X. Cao, Y. He, K. Wu, J. Yang, H. Zhou, W. Liu, X. Sun, Thiol‐Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium‐Metal Batteries, Advanced Materials. 32 (2020) 2001259.
[85] J. Zhang, S. Wang, D. Han, M. Xiao, L. Sun, Y. Meng, Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance, Energy Storage Materials. 24 (2020) 579–587.
[86] C. Zuo, B. Zhou, Y.H. Jo, S. Li, G. Chen, S. Li, W. Luo, D. He, X. Zhou, Z. Xue, Facile fabrication of a hybrid polymer electrolyte via initiator-free thiol–ene photopolymerization for high-performance all-solid-state lithium metal batteries, Polymer Chemistry. 11 (2020) 2732–2739.
[87] S. Park, B. Jeong, D.-A. Lim, C.H. Lee, K.H. Ahn, J.H. Lee, D.-W. Kim, Quasi-Solid-State Electrolyte Synthesized Using a Thiol–Ene Click Chemistry for Rechargeable Lithium Metal Batteries with Enhanced Safety, ACS Applied Materials & Interfaces. 12 (2020) 19553–19562.
[88] J. Schiller, R. Süß, J. Arnhold, B. Fuchs, J. Leßig, M. Müller, M. Petković, H. Spalteholz, O. Zschörnig, K. Arnold, Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research, Progress in Lipid Research. 43 (2004) 449–488.
[89] D.A. Dornbusch, R. Hilton, M.J. Gordon, G.J. Suppes, Effects of sonication on eis results for zinc alkaline batteries, ECS Electrochemistry Letters. 2 (2013) A89.
[90] H. Zhou, Y. Chen, C.M. Plummer, H. Huang, Y. Chen, Facile and efficient bromination of hydroxyl-containing polymers to synthesize well-defined brominated polymers, Polymer Chemistry. 8 (2017) 2189–2196.
[91] J.-T. Miao, L. Yuan, Q. Guan, G. Liang, A. Gu, Water-Phase Synthesis of a Biobased Allyl Compound for Building UV-Curable Flexible Thiol–Ene Polymer Networks with High Mechanical Strength and Transparency, ACS Sustainable Chemistry & Engineering. 6 (2018) 7902–7909.
[92] G.E. McManis, L.E. Gast, IR spectra of long chain vinyl derivatives, Journal of the American Oil Chemists Society. 48 (1971) 668–673.
[93] M.G. Nair, S.R. Mohapatra, Role of succinonitrile in improving ionic conductivity of sodium-ion conductive polymer electrolyte, in: AIP Conference Proceedings, American Institute of Physics Inc., 2018: p. 090081.