| 研究生: |
郭晏瑱 Kuo, Yen-Tien |
|---|---|
| 論文名稱: |
La1-xSrxMnO3粉末之鑑定及催化CO+NO反應之研究 Characterization of La1-xSrxMnO3 Powders and Their Catalytic Properties for the CO+NO Reaction |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 外文關鍵詞: | CO+NO, La1-xSrxMnO3 |
| 相關次數: | 點閱:59 下載:34 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
廢氣中之氮氧化物及一氧化碳已成為目前空氣污染最主要的來源。為減少此等氣體,貴金屬以及鈣鈦礦結構之陶瓷粉末被研發作為其催化反應的觸媒。其中貴金屬粉末價格較昂貴且於高溫反應中易發生燒結現象;而鈣鈦礦型氧化物則有較佳之熱穩定性,且價格比較便宜,因而深受注目。本研究旨在合成鈣鈦礦結構之La1-xSrxMnO3觸媒粉末,並檢討Sr取代分率對觸媒特性及CO+NO活性反應之影響。
La1-xSrxMnO3觸媒是以檸檬酸鹽法製備。Sr的添加可降低結晶性La1-xSrxMnO3的合成溫度。La1-xSrxMnO3觸媒之晶格常數與表面積是隨Sr含量的增加而增加;粒徑大小與結晶子大小則是隨Sr含量的增加而減小。Sr添加量少時(x≦0.15)合成的粉末僅含鈣鈦礦結構的晶相,Sr添加量增多時( x ≧0.2),則除鈣鈦礦晶相外,亦含有SrCO3之晶相。
LaMnO3觸媒的活性可藉Sr的添加而提高,本研究中具有最佳活性的觸媒是La0.85Sr0.15MnO3,其可將CO + NO氣體轉化T90之溫度降至約400℃。氣體進料體積濃度比為CO:NO=1:2時,La0.85Sr0.15MnO3觸媒在400℃下有較佳的轉化率。TPD、TPR及TPO之實驗結果顯示:La1-xSrxMnO3 ( x = 0 ~ 0.2 )觸媒催化CO及NO之反應是屬於氧化還原機制,且於反應中仍保持為鈣鈦礦結晶相。
NOx and CO removal from the combustion exhaust gases has become a serious environmental problem. In order to reduce these pollutants both noble metals and perovskite-type catalysts have been used. Compared to noble metals being expensive and having the sintered problem, perovskite oxides have better thermal stability and are cheaper, therefore it is noticeable in the last years. The aim of this study was to synthesize the perovskite catalyst of La1-xSrxMnO3, and to investigate the influence of Sr content on the characteristics and the activity for CO+NO reaction.
La1-xSrxMnO3 catalysts were prepared by the amorphous citrate method. Dopping Sr can reduce the temperature for synthesizing La1-xSrxMnO3 . The powder synthesized at 700℃ showed only one phase of La1-xSrxMnO3 perovskite for x≦0.15, and the other phases of SrCO3 for x≧0.2. The lattice parameters and specific surface area of La1-xSrxMnO3 increased and the particle sizes, crystalline sizes of La1-xSrxMnO3 decreased with an increase in the fraction of Sr.
The activity of LaMnO3 catalysts can be enhanced by dopping Sr. In this study, the La0.85Sr0.15MnO3 catalyst had the highest activity and with this catalyst, the temperature for complete conversion of CO+NO could be down to 400℃. The catalyst also gave a higher conversion of CO into CO2 and NO into N2 at 400℃in the condition of CO:NO=1:2 (volume ratio). The results of temperature programmed test showed that the La1-xSrxMnO3 (x = 0 ~ 0.2) catalysts for the CO+NO reaction was an oxidation-reduction mechanism and the catalysts after catalytic reaction preserved perovskite phase.
1.Barnes J. M., Ape, W. A., Barrett, K. B. “Romoval of Nitrogen Oxides from Gas Streams Using Biofiltration”, Journal of Hazardous Materials, Vol. 41, 315-326 (1995).
2.Baythoun M. S. G. and Sale F. R., “Production of Strontium-substituted Lanthanum Manganite Perovskite Powder by the Amorphous Citrate Process”, Journal of Materials Science, 17, 2757-2769 (1982).
3.Belessi V. C. et al., “Catalytic Behavior of La-Sr-Ce-Fe-O Mixed Oxidic/Perovskitic Systems for the NO+CO and NO+CH4+O2 (Lean-Nox) Reactions”, Catalysis Today, 59, 347-363 (2000).
4.Belessi V. C. et al., “Structure and Catalytic Activity of La1-xFeO3 System ( x = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.35) for the NO+CO Reaction”, Applied Catalysis A: General, 177, 53-68 (1999).
5.Bianco A., Paci M. and Freer R., “Zirconium Titanate:from Polymeric Precursors to Bulk Ceramics”, J. Eur. Ceram. Soc., 18, 1235-1243 (1998).
6.Bilger S., Syskakis E., Naoumidis A. and Nickel. H., “Sol-Gel Synthesis of Strontium-Doped Lathanum Manganite”, J. Am. Ceram. Soc., 75, (4), 964-970 (1992).
7.Birringer R., Herr U. and Gleiter H., “Nanocrystalline materials: a first report”, JIM Trans. Suppl. 27, 43 (1986).
8.Blyholder G., J. Phys. Chem. 68, 2772 (1964).
9.Bosch H. and Janssen F., Catal. Today, 171, 499, 1971.
10.Chan K. S., Ma J., Jaenicke S., Chuah G. K., Lee J. Y., Appl. Catal. A, 107, 201 (1994)
11.Chang S. G., Littlejohn, D. and Lynn, S., “Effects of Metal Chelates Wet Flue Gas Scrubbing Chemistry”, Environ. Sci. Technol., Vol. 17, 649-653 (1983).
12.Chang-Tai X., Er-Wei S., Wei-Zhuo Z. and Jing-Kun G., “Preparation of BaTiO3 by the Hydrothermal Method”, J. of European Ceramic Society, 15, 1171-1176 (1995).
13.Cho S. G., Johnson P. F. and Condrate R. A., ”Thermal decomposition of (Sr, Ti) organic precursor during the Pechini process”, J. Mater. Sci., 25, 4738-4744 (1990).
14.Choy J. H. and Y. S. Han., “Citrate Route to the Piezoelectric Pb(Zr,Ti)O3 Oxide”, J. Mater. Chem., 7(9), 1815-1820 (1997).
15.Choy J. H., Han Y. S., Hwang S. H., Byeon S. H., Demazeau G., “Citrate Route to Sn-Doped BaTi4O9 with Microwave Dielectric Properties”, J. Am. Ceram. Soc., 81(12), 3197-3204 (1998).
16.Choy J. H., Han Y. S., Kim J. T., Y. H. Kim. “Citrate Route to Ultra-Fine Barium Polytitanates with Microwave Dielectric Properties”, J. Mater. Chem., 5(1), 57-63 (1995)..
17.Corma V., Fornes E., Palomares, “Selective Catalytic Reduction of NOx on Cu-beta Zeolites”, Applied Catalysis B: Environmental, 11, 233-243 (1997).
18.Daniela Pietrogiacomi et al., “The Catalytic Activity of CuOx/ZrO2 for the Abatement of NO with Propene or Ammonia in the Presence of O2”, Applied Catalysis B: Environmental, 21, 141-150 (1999).
19.Falter L. M., Pane D. A., Friedmann T. A., Wright W. H., Ginsberg D. M., “Preparation of Ceramic Superconductors by the Pechini Method”, Bri. Ceram. Proc., 41, 261-269 (1988).
20.Ferri D., Forni L., “Methane Combustion on Some Perovskite-Like Mixed Oxides”, Appl. Catal. B:Environmental, 16, 119-126 (1998).
21.Goodenogh J. B., Longo J. M., “Landolt-Bornstein New Series”, Speinger-Verlag Berlin and New York, V4. Parta. 126 (1970).
22.Hennings D., Mayr W., “Theraml Decomposition of (BaTi) Citrates into Barium Titanate”, J. Solid State Chem., 26, 329-338 (1978).
23.Hutchins G. A., Maher G. H., Ross S. D., ”Control of the Ba:Ti Ratio of BaTiO3 at a Value of Exactly 1 via Conversion to BaO.TiO2.3C6H8O7.6H2O”, Am. Ceram. Soc. Bull., 66(4), 681-684 (1987).
24.Hyu-Bum P., Ho-Jin K., Young-Sik H. and Si-Joong K., “Preparation of La1-xSrxMnO3 Powders by combustion of poly (ethylene glycol)-metal nitrate gel precursors”, J. Mater. Sci., 32, 57-65 (1997).
25.Irusta S., Pina M. P., Menendez M., and Santamara J., “Catalytic Combustion of Volatile Organic Compounds over La-Based Perovskites”, J. of Catalysis, 179, 400-412(1998).
26.Janusz Nowotny, Mieczyslaw Rekas, “Defect Chemistry of (La, Sr) MnO3”, J. Am. Ceram. Soc., Vol. 81, No. 1, 67-80 (1998).
27.Kakihana M., Milanova M. M. et al., “Polymerized Complex Route to Synthesis of Pure Y2Ti2O7 at 750℃ Using Yttrium-Titanium Mixed-Metal Citric Acid Complex”, J. Am. Ceram. Soc., 79 (6), 1673-1676 (1996).
28.Kiebling D., Schneider R., P. Kraak et al., “Perovskite-type oxides-catalysts for the total oxidation of chlorinated hydrocarbons”, Applied Catalysis B:Environmental, 19, 143-151 (1998).
29.King D. A., Woodruff D.P., The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis (1981).
30.Klug H. P., Alexander L. E., X-ray Diddraction Procedures (Wiley, New York) Chap. 9 (1974).
31.Lee Y. N. et al., “Surface Properties and Catalytic Performance for Ethane Combustion of La1-xKxMnO3±δ Perovskites”, Applied Catalysis A: General, 207, 17-24 (2001).
32.Lessing P. A., “Mixed-Cation Oxide Powders via Polymeric Precursors”, Am. Ceram. Soc. Bull., 68(5), 1002-1007 (1989).
33.Libby W. F., Sci., 171, 499 (1971).
34.Liu J. W., Zeng Z., Zheng Q. Q., Lin H.Q., “Effective Transfer Integrals for the Jahn-Teller Distortion in LaMnO3”, 60, 18, 12968-12973 (1999).
35.Magneli A., Acta Chem. Scand. 7, 315 (1953).
36.Marchetti L., Forni L., “Catalytic Combustion of Methane over Perovskites”, Applied Catalysis B: Environmental, 15, 179-187 (1998).
37.Marcilly C., Courty P., B. Delmon, “Preparation of Highly Dispersed Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic Precursors”, J. Am. Ceram. Soc., 53(1), 56-57 (1970).
38.Marecot P. et al., Appl. Catal., B, 5, 57 (1994).
39.Mark S. D. Read and M. Saiful Islam, “Defect Chemistry of La2Ni1-xMxO4 (M=Mn, Fe, Co, Cu): Relevance to Catalytic Behavior”, J. Phys. Chem. B, 103, 1558-1562 (1999).
40.Miller, G. T., Jr., Environmental Science, Fourth ed., California, Wadsworth (1992).
41.Nakamura T., Misono. M., Yoneda Y., “Catalytic Properties of Perovskite-type Mixed Oxides La1-xSrxCoO3,” Bull. Chem. Soc. Jpn., 55, 394 (1982).
42.Ng-Lee Y., El-Fadli Z., Sapina F. et al., “Synthesis and surface characterization of nanometric La1-xKxMnO3+δparticles”, Catalysis Today, 52, 45-52 (1999).
43.O’Connell M. et al., “Catalytic Oxidation over Lanthanum-Transition Metal Perovskite Materials”, Catalysis Today, 47, 123-132 (1999).
44.Parravano G., “Promising Catalyst for Autoexhaust”, J. Chem. Phys., 20, 342 (1952).
45.Pârvulescu V. I., Grange P., Delmon B., Catal. Today, 46 , 233 (1998).
46.Pechini M. P., “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coationg Method Using the Same to Form a Capacitor”, U. S. Pat., No. 3 330 697, Jul. 11 (1967).
47.Pechini M. P., ”Barium Titanium Citrate, Barium Titanate and Processes for Producing Same”, U.S. Pat., No. 3 231 328, Jan. 25, (1969).
48.Philippe Decorse, Gilles Caboche, Louis-Claude Dufour, “A comparative study of the Surface and Bulk Properties of Lanthanum - Strontium - Manganese Oxides La1-xSrxMnO3±δ as a Function of Sr-Content, Oxygen Potential and Temperature”, Solid State Ionics, 117, 161-169 (1999).
49.Phillip W. C.,”Carbon Monoxide Measurement and Monitoring in Urban Air,” Environmental Science & Technology 5, 3, 231 (1971).
50.Pisanu M., Gigola C. E., “NO Decomposition and NO Reduction by CO over Pd/γ-Al2O3”, Applied Catalysis B: Environmental, Vol. 20, 179-189 (1999).
51.Polawski K., Lichtenberger J., Keil Frerich J., Schnitzlein K., Amirdis M. D. “Catalytic oxidation of 1,2-dichlorobenzene over ABO3-type perovskites”, Catalysis Today , 62, 329-336 (2000).
52.Ponce S. et al., “Surface Properties and Catalytic Performance in Methane Combustion of Sr-Substituted Lanthanum Manganites”, Applied Catalysis B: Environmental, 24, 193-205 (2000).
53.Roger A., Souza D., Saiful Islam M. and Ivers-Tiffèe E., “Formation and migration of cation defects in the perovskite oxide LaMnO3”, J. of Mater. Chem., 9, 1621-1627 (1999).
54.Sada, H., Kumazawa, I. Kudo and T. Konodo, “Absorption of NO in Aqueous Mixed Solution of NaClO2 and NaOH”, Chem. Eng. Sci., Vol. 23, 315-318 (1978).
55.Salze H., Odier P., Cales B., “Elaboration of Fine Micropowders from Organometallic Polymers Precursors”, J. Non-Cryst. Solids, 82, 314-320 (1986).
56.Shigeo Uchida, Shizeo Kageyama, Tsuguo Kobayash, “Absorption of Nitrogen Monoxide into Aqueous KMnO4/NaOH and Na2SO3/FeSO4 Solution”, I&EC Process Des. Dev., 22(2), 323-329 (1983).
57.Simonot L. et al., “A Comparative Study of LaCoO3, Co3O4 and a Mix of LaCoO3-Co3O4 Ⅱ. Catalytic Properties for the CO+NO Reaction”, Applied Catalysis B: Environmental, 11, 181-191 (1997).
58.Smith J. R., Appelbaum J. A. et al.,Theory of Chemisorption, 19 (1980).
59.Sorenson S. C. , Wronkiewicz J. A. , Sis L. B. and Wirtz G. P., Ceramic Bulletin, 53(5), 446 (1974).
60.Taguchi H., Matsuda D., Nagao M., “Synthesis of LaMnO3 using poly (acrylic acid)”, J. Mater. Sci. Lett., 12, 891-893 (1993).
61.Voorhoeve R. J. H., “Advanced Materials in Catalysis”, Academic Press, New York, Chap. 5 (1977).
62.Voorhoeve R. J. H., “Perovskite-Related Oxides as Oxidation-Reduction Catalysts”, Advanced Materials in Catalysis, 129, 180 (1976).
63.Voorhoeve R. J. H., Johnson D. W., Remeika J. P., Gallagher P. K., “Perovskite Oxides:Materials Science in Catalysis Science”, 195, 827 (1977).
64.Voorhoeve R. J. H., Remika J. P. and Trimble L. E., R. L. Klimisch and J. G. Larson, Eds., (1975).
65.Zhang H. M., Teraoko Y., Yamazoe N., Appl. Catal., 41, 137 (1988).
66.Zhang-Steenwinkel Y. et al., “Surface Properties and Catalytic Performance in CO Oxidation of Cerium Substituted Lanthanum- Manganese Oxides”, Applied Catalysis A : General, 235, 79-92 (2002).
67.吳榮宗, ”工業觸媒概論”, 247-262 (1983).
68.廖聖茹, 黃依蘋, 林仁章, 黃瑞呈, 工業材料雜誌, 190, 115-123 (2002).
69.張慶璋, ”溫度效應對一氧化氮在銅/碳煙觸媒上還原反應行為之探討”, 國立中山大學化學研究所碩士論文 (1996).
70.張有義, 郭蘭生, “膠體及介面化學入門”,高立圖書有限公司, 125-164 (1997).
71.朱信, 簡聰文, “煙道氣濕式除硫除氮整合系統之研究”, 第十屆空氣污染控制技術研討會論文集, 1993.
72.林景正、賴宏仁, “奈米材料技術與發展趨勢”, 工業材料 153期, 95(1999)
73.林淑萍, 國立成功大學材料科學與工程研究所博士論文 (2001).
74.盧裕倉, 以觸媒氧化法處理含揮發性有機物煙道氣之研究, 國立中山大學環境工程研究所碩士論文 (1999).
75.蔡嬪嬪,曾明漢, “材料與社會”, 50-56 (1992).
76.蔣孝澈, 陳光龍, ” 由鹽類溶液製作納米氧化物之簡介”, 化工, 46(3), 67 (1999).