| 研究生: |
柳世恆 LIU, SHIH-HENG |
|---|---|
| 論文名稱: |
以振動輔助劃切法加工硬脆材料之研究 An Investigation of Vibration-Assisted Scribing for Brittle Materials |
| 指導教授: |
王俊志
Wang, J-J Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 振動輔助劃切 、延脆轉變深度 、臨界切深 、硬脆材料 |
| 外文關鍵詞: | vibration-assisted scribing, brittle-ductile transition depth, brittle material, critical depth of cut (CDC) |
| 相關次數: | 點閱:73 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用壓電致動器在刀具上產生橢圓振動,並以此振動劃切硬脆材料劃切形成振動輔助劃切。文中以鑽石刀劃切單晶矽,觀察振動輔助劃切與傳統劃切對矽的延脆轉變深度的大小,以及加工後在脆性破壞區及延性切削區的表面粗糙度。
硬脆材料的臨界切深與材料及刀具幾何有關,而本文使用的鑽石刀劃切矽之臨界切深為0.17μm,而在振動輔助劃切時,臨界切深會隨進給速度下降與切深方向振幅增加而增加,以進給速度10 μm/s、切深方向5μm的振動輔助劃切單晶矽,延脆轉變深度可達2μm,此值為傳統劃切的10倍。
振動輔助切削與傳統劃切在脆性破壞區時,溝槽底面的表面粗糙度Ra分別為0.3μm與0.9μm,Rmax分別為4 μm~10 μm及10 μm~14 μm。藉由振動輔助劃切可以降低矽的裂紋長度,使表面比傳統劃切平整。
關鍵字:振動輔助劃切;延脆轉變深度;臨界切深;硬脆材料
This thesis combines the elliptical tool vibration and brittle materials scribing process to generate vibration-assisted scribing. We use the vibration that is produced by the piezoelectric actuator to make the elliptical vibration on the tool. In this thesis, we select diamond tool to scribe silicon. This thesis also investigates the difference of brittle-ductile transition depth and surface roughness Ra, Rmax on finished silicon in both brittle and ductile regime between vibration-assisted scribing and traditional scribing.
The critical depth of cut (CDC) depends on material properties and tool geometry. The CDC is 0.17 μm as using the diamond tool we choose to scribe silicon, and CDC increase as feed rate decrease or cut depth vibration increase in vibration-assisted scribing. At feed rate 10 μm/s and cut depth vibration 5μm condition, CDC is 2 μm as 10 times than traditional scribing.
Compared with vibration-assisted scribing and traditional scribing in brittle zone, the surface roughness Ra is 0.3 μm and 0.9 μm respectively, and Rmax¬ is 4 μm~10 μm and 1 0μm~14 μm respectively by vibration-assisted scribing, the surface will be smoother than traditional scribing process in brittle zone because vibration-assisted scribing reduce the crack growth.
keywords:vibration-assisted scribing;brittle-ductile transition depth;brittle material;critical depth of cut (CDC)
1. Shamoto, E. and Moriwaki, T., ‘‘Study on Elliptical Vibration Cutting,’’ Annals of the CIRP, 43(1), pp. 35-38, 1994.
2. L. J. Wang and J. Zhao, ‘‘Influence on Surface Roughness in Turning with Ultrasonic Vibration Tool,’’ International Journal of Machine Tool andManifacture, Volume 27, pp. 181-190, 1987.
3. V. I. Babitsky and A. V. Mitrofanov, and V. V. Silberschmidt, ‘‘Ultrasonvically assisted turning of aviation materials: simulations and experimental study,’’ Proceedings of Ultrasonics International, Volume 42, pp. 81-86, 2004
4. J. Pujanaa and A. Riveroa, ‘‘Analysis of ultrasonic-assisted drilling of Ti6Al4V,’’ International Journal of Machine Tools and Manufacture ,Volume 49, pp. 500-508, 2009
5. Taghi Tawakoli and Bahman Azarhoushang, ‘‘Influence of ultrasonic vibrations on dry grinding of soft steel,’’ International Journal of Machine Tools and Manufacture, Volume 48, pp. 1585-1591,2008
6. V. I. Babitsky, and A. N. Kalashnikov, ‘‘Autoresonant control of ultrasonically assisted cutting,’’ Mechatronics Volume 14, pp. 91-114 ,2004
7. Taghi Tawakolia and Bahman Azarhoushang, ‘‘A study on ultrasonic elliptical vibration cutting of tungsten carbide,’’ Journal of Materials Processing Technology Volume 209, pp. 4459-4464, 2009
8. C. Zhang, R. Rentsch and E. Brinksmeier ‘‘Advances in micro ultrasonic assisted lapping of microstructures in hard–brittle materials: a brief review and outlook,’’ International Journal of Machine Tools and Manufacture Volume 50, pp. 728-736, 2010
9. Y.S. Liaoa and G.M. Yang ‘‘Vibration assisted scribing process on LCD glass substrate,’’ International Journal of Machine Tools and Manufacture Volume 50, pp. 532-537, 2010
10. D. A. Lucca, P. Chou, R. J. Hocken, ‘‘Effect of Tool Edge Geometry on the Nanometric Cutting of Ge,’’ Annals of the CIRP, 47, pp. 475-478, 1998
11. Jeong-Du Kim, Dong-Sik Kim, ‘‘Surface characteristics of magnetic-disk cutting using a single-crystal diamond tool in an ultraprecision lathe,’’ Journal of Materials Processing Technology, 59, pp.303-308, 1996
12. Siva Venkatachalama, Xiaoping Lib and Steven Y. Liang, ‘‘Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials’’ Journal of Materials Processing Technology, Volume 209, pp.3306-3319, 2009
13. P. Blake and R. Scattergood, ‘‘Ductile regime machining of germanium and silicon,’’ Journal of American Ceramic Society, 73 (4), pp. 949–957, 1990
14. Y.Y. Liao, ‘‘An Investigation of Material Responses in an Abrasive Machining of Brittle Materials’’ Doctorial Dissertation, Department of Mechanical Engineering of National Chang Kung University, 2009.
15. T.G. Bifano, T.A. Dow and R.O. Scattergood, ‘‘Ductile-regime grinding: a new technology for machining brittle materials’’, Journal of Engineering Industry Technology ASME, 113, pp. 184–189, 1991
16. M. Emartellotti, ‘‘An Analysis of the Milling Process,’’ Transaction of ASME, Vol. 63, pp. 677-700, 1941
17. M. Emartellotti, ‘‘An Analysis of the Milling Process,’’ Part 2: Down Milling,’’ Transaction of ASME, Vol. 67, pp. 233-251, 1945