簡易檢索 / 詳目顯示

研究生: 沈青玉
Shen, Ching-Yu
論文名稱: 姬蝴蝶蘭 B-sister群 MADS-box 基因 PeMADS28 之功能探討
Functional characterization of PeMADS28, a B-sister MADS-box gene, from Phalaenopsis equestris
指導教授: 蔡文杰
Tsai, Wen-Chieh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 43
中文關鍵詞: 姬蝴蝶蘭胚珠MADS-boxB-sister 群基因
外文關鍵詞: Phalaenopsis equestris, ovules, MADS-box, B-sister gene
相關次數: 點閱:126下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 典型的開花植物,其胚珠與卵細胞在開花時就已發育完全,等待後續的授精作用。但是蝴蝶蘭的胚珠發育是受授粉作用的精確調控,其開花時並不具備已發育完全的胚珠。在花的演化過程中,MADS-box B-sister 群基因皆維持表現在雌性生殖器官中,並可能為(內)珠被構造發育的‘marker genes’,珠被為圍繞在種子植物雌配子體周圍的組織,在演化上屬於相當古老的構造。前人研究中,阿拉伯芥的B-sister 群基因ARABIDOPSIS BSISTER (ABS) 會專一性的表現在胚珠當中。矮牽牛的 B-sister 群基因 FLORAL BINDING PROTEIN24 (FBP24)為確定胚珠內皮細胞身分所必須的基因。此外,水稻的OsMADS29 是調控種子發育早期的關鍵基因。在本研究中,我們從姬蝴蝶蘭(Phalaenopsis equestris)中選殖出 MADS-box B-sister群基因PeMADS28,並分析其功能。結果顯示,PeMADS28 基因首先被偵測表現於授粉後32天的時期,並持續表現至授粉後48天,基因表現的期間為子房胎盤及內珠被與外珠被發育的時期。再者,我們利用雙分子螢光互補(Bimolecular fluorescence complementation, BiFC)的方法探討姬蝴蝶蘭中PeMADS28與MADS-box C群、D群及E群的蛋白質交互作用關係,結果顯示PeMADS28可分別與D群 PeMADS7 及E群 PeSEP3 形成異源二聚體,並可與自身蛋白質 PeMADS28 形成同源二聚體。而將PeMADS28外源表現在阿拉伯芥中的實驗中,在轉殖株的發育早期,我們觀察到其輪狀葉生長捲曲且果莢較短的表現型。以上的研究發現PeMADS28在姬蝴蝶蘭的胚珠發育中扮演重要的角色,並更了解B-sister 基因原始的功能。

    The ovules and the egg cells are well-development to be fertilized at anthesis in most of flowering plants. In contrast, ovule development is triggered by pollination in Phalaenopsis orchids. During flower evolution, expression pattern of B-sister genes maintained in female reproductive organs. Moreover, B-sister genes may serve as ‘marker genes’ for the development of (inner) integument tissues, which are the phylogenetically ‘oldest’ structures surrounding the female gametophyte of seed plants. In the genetics studies of ovule development, ARABIDOPSIS BSISTER (ABS) gene was expressed mainly in the ovule. In petunia, FLORAL BINDING PROTEIN24 (FBP24) was necessary to determine the identity of the endothelial layer of the ovule. Moreover, OsMADS29 is a key regulator of early rice seed development in previous studies. In this study, PeMADS28, a B-sister gene, was cloned and characterized from the Phalaenopsis equestris. The results of RT-PCR and quantitative real-time RT-PCR showed that the PeMADS28 gene expression was first detected at the 32 day after pollination (DAP) and sustained to 48 DAP, which associated with the inner and the outer integuments development. Analysis of protein-protein interactions among PeMADS28 and C-, D-, E-class proteins were examined by using BiFC assay. Results revealed that PeMADS28 could form homodimers in the nucleus and interact with PeSEP3 and PeMADS7, respectively. However, PeMADS28 could not form heterodimers with PeMADS1. In addition, ectopic expression in Arabidopsis thaliana induced curled and small rosette leaves in early development stage. In addition, the silique length is shorter compared to that of wild-type. These findings suggest the important role of PeMADS28 in Phalaenopsis ovule development and provide insights into the ancestral function of B-sister genes.

    Table of Contents 摘要 ii Abstract iii 致謝 iv Table of Contents..........................................................................................................v List of Tables...............................................................................................................vii List of Figures............................................................................................................viii 1. Introduction - 1 - 1.1 Orchid flowers - 1 - 1.1.1 Floral morphology of Orchidaceae - 1 - 1.1.2 Reproductive biology of orchids - 1 - 1.1.2.1 Post-pollination changes in Phalaenopsis orchid - 2 - 1.1.2.2 Ovule development of Phalaenopsis orchid - 3 - 1.2 MADS-box gene involved in ovule development - 4 - 1.2.1 ABCDE model - 4 - 1.2.2 The floral quartet model - 5 - 1.2.3 Overlapping functions of MADS-box genes in ovule development - 6 - 1.3 B-sister homeotic genes - 6 - 1.3.1 Evolution of B-sister homeotic genes - 6 - 1.3.2 B-sister homeotic genes in dicots - 7 - 1.3.3 B-sister homeotic genes in monocots - 8 - 2. Aim of this study - 10 - 3. Materials and Methods - 11 - 3.1 Plant materials and growth conditions - 11 - 3.2 Sequence alignments and phylogenetic analysis - 11 - 3.3 RNA extraction - 11 - 3.4 RT-PCR and quantitative real-time PCR - 12 - 3.5 in situ hybridization - 13 - 3.6 Subcellular localization of PeMADS28-GFP fusion protein - 13 - 3.7 Bimolecular fluorescence complementation assay - 14 - 3.8 Arabidopsis transformation - 15 - 4. Results - 16 - 4.1 Identification of PeMADS28 MADS-box gene in P. equestris - 16 - 4.2 Phylogenetic relationship of PeMADS28 and other MADS-box genes - 16 - 4.3 Spatial and temporal expression of PeMADS28 in P. aphrodite subsp. formosana - 16 - 4.4 in situ hybridization of PeMADS28 transcripts - 17 - 4.5 Subcellular localization of PeMADS28-GFP fusion protein - 17 - 4.6 Analysis of protein-protein interactions among PeMADS28 and C-, D-, E-class proteins by using BiFC assay - 17 - 4.7 Functional analysis of the PeMADS28 gene by ectopic expression in Arabidopsis thaliana - 18 - 5. Discussion - 20 - 5.1 Phalaenopsis B-sister MADS-box gene - 20 - 5.2 PeMADS28 may be required for ovule development in Phalaenopsis - 20 - 5.3 The nuclear localization capabilities of PeMADS28 - 21 - 5.4 The MADS-transcription factor complex involved in ovule development in P. equestris - 22 - 5.5 Ectopic expression of PeMADS28 in Arabidopsis - 23 - 6. References - 25 -   List of Tables Table. 1. List of primers used in this study - 31 - Table. 2. The statistical results of silique length and seeds in OXPeMADS28 transgenic plants compared to Wild type plants. - 32 -   List of Figures Figure. 1. Alignment of amino acid sequence of PeMADS28 and other B-sister genes. - 33 - Figure. 2. Phylogenetic analysis of B-sister proteins. - 34 - Figure. 3. Expression patterns of PeMADS28 at various developing ovule stages in P. aphrodite subsp. formosana. - 35 - Figure. 4. in situ hybridization of PeMADS28 in cross sections in developing ovules of P. aphrodite subsp. formosana. - 36 - Figure. 5. Determination of the localization patterns of PeMADS28-GFP fusions in Phalaenopsis protoplasts. - 38 - Figure. 6. Analysis of protein-protein interactions among B-sister PeMADS28, C-class PeMADS1, D-class PeMADS7 and E-class PeSEP3 proteins by BiFC method. Fusion proteins were expressed in P. aphrodite subsp. formosana protoplasts. - 39 - Figure. 7. Phenotypes of leaves and plant size in wild-type and transgenic plants. - 41 - Figure. 8. Phenotypes of floral inflorescence in wild-type and transgenic plants. - 42 - Figure. 9. Phenotypes of siliques and seeds in wild-type and transgenic plants. - 43 -

    Afzelius K. 1954. Embryo-sac development in Epipogium aphyllum. Svensk bot. Tidskr 48, 513-520.

    Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S. 2007. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8, 242.

    Becker A, Kaufmann K, Freialdenhoven A, Vincent C, Li MA, Saedler H, Theissen G. 2002. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol Genet Genomics 266, 942-950.

    Bouman F. 1984. The Ovule. In: Johri B, ed. Embryology of Angiosperms: Springer Berlin Heidelberg, 123-157.

    Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L. 2007. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19, 2544-2556.

    Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47, 65-72.

    Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, Liu KW, Chen LJ, Liu ZJ, Tsai WC. 2012. C- and D-class MADS-Box Genes from Phalaenopsis equestris (Orchidaceae) Display Functions in Gynostemium and Ovule Development. Plant and Cell Physiology 53, 1053-1067.

    Christenson EA. 2001. Phalaenopsis: A Monograph: Timber Press.

    Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.

    Cozzolino S, Widmer A. 2005. Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20, 487-494.

    de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent GC, Immink RG. 2006. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J 47, 934-946.

    Duncan RE, Curtis JT. 1942. Intermittent growth of fruits of Cypripedium and Paphiopedilum. A Correlation of the Growth of Orchid Fruits with their Internal Development. Bulletin of the Torrey Botanical Club 69, 353-359.

    Duncan RE, Curtis JT. 1943. Growth of fruits in Cattleya and allied genera in the Orchidaceae. Bulletin of the Torrey Botanical Club 70, 104-119.

    Egea-Cortines M, Saedler H, Sommer H. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. Embo J 18, 5370-5379.

    Erdmann R, Gramzow L, Melzer R, Theissen G, Becker A. 2010. GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana B(sister) MADS box gene ABS (TT16) that has undergone neofunctionalization. Plant J 63, 914-924.

    Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15, 2603-2611.

    Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RG. 2004. Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16, 1490-1505.

    Fredrikson M. 1991. An embryological study of Platanthera bifolia (Orchidaceae). Plant systematics and evolution 174, 213-220.

    Fredrikson M. 1992. The development of the female gametophyte of Epipactis (Orchidaceae) and its inference for reproductive ecology. Am. J. Bot., 63-68.

    Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, Tsai WC, Chen HH. 2011. OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52, 238-243.

    Honma T, Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525-529.

    Immink RG, Gadella TW, Jr., Ferrario S, Busscher M, Angenent GC. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A 99, 2416-2421.

    Israel HW, Sagawa Y. 1965. Post-Pollination Ovule Development in Dendrobium Orchids: III. Fine Structure of Meiotic Prophase I. Caryologia 18, 15-34.

    Karimi M, Bleys A, Vanderhaeghen R, Hilson P. 2007. Building blocks for plant gene assembly. Plant Physiol 145, 1183-1191.

    Kaufmann K, Anfang N, Saedler H, Theissen G. 2005. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein. Mol Genet Genomics 274, 103-118.

    Kronenberger J, Desprez T, Höfte H, Caboche M, Traas J. 1993. A methacrylate embedding procedure developed for immunolocalization on plant tissues is also compatible with in situ hybridization. Cell Biology International 17, 1013-1022.

    Liu C, Zhang J, Zhang N, Shan H, Su K, Zhang J, Meng Z, Kong H, Chen Z. 2010. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Mol Biol Evol 27, 1598-1611.

    Lovisetto A, Guzzo F, Busatto N, Casadoro G. 2013. Gymnosperm B-sister genes may be involved in ovule/seed development and, in some species, in the growth of fleshy fruit-like structures. Ann Bot 112, 535-544.

    McGonigle B, Bouhidel K, Irish VF. 1996. Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev 10, 1812-1821.

    Mizzotti C, Mendes MA, Caporali E, Schnittger A, Kater MM, Battaglia R, Colombo L. 2012. The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J 70, 409-420.

    Mondragon-Palomino M. 2013. Perspectives on MADS-box expression during orchid flower evolution and development. Front Plant Sci 4, 377.

    Munster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theissen G. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci U S A 94, 2415-2420.

    Nadeau JA, Zhang XS, Li J, O'Neill SD. 1996. Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell 8, 213-239.

    Nam J, dePamphilis CW, Ma H, Nei M. 2003. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Mol Biol Evol 20, 1435-1447.

    Nayar S, Kapoor M, Kapoor S. 2014. Post-translational regulation of rice MADS29 function: homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus. J Exp Bot 65, 5339-5350.

    Nayar S, Sharma R, Tyagi AK, Kapoor S. 2013. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot 64, 4239-4253.

    Nesi N. 2002. The TRANSPARENT TESTA16 Locus Encodes the ARABIDOPSIS BSISTER MADS Domain Protein and Is Required for Proper Development and Pigmentation of the Seed Coat. The Plant Cell Online 14, 2463-2479.

    Ng M, Yanofsky MF. 2001. Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2, 186-195.

    Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424, 85-88.

    Prasad K, Zhang X, Tobon E, Ambrose BA. 2010. The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. Plant J 62, 203-214.

    Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110.

    Riechmann JL, Krizek BA, Meyerowitz EM. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A 93, 4793-4798.

    Riechmann JL, Meyerowitz EM. 1997. MADS domain proteins in plant development. Biol Chem 378, 1079-1101.

    Smyth D. 2000. A reverse trend--MADS functions revealed. Trends Plant Sci 5, 315-317.

    Sood S, Mohana Rao P. 1986. Development of male and female gametophytes in Herminium angustifolium (Orchidaceae). Phytomorphology.

    Su YH, Liu YB, Zhang XS. 2011. Auxin-cytokinin interaction regulates meristem development. Mol Plant 4, 616-625.

    Theissen G. 2005. Birth, life and death of developmental control genes: new challenges for the homology concept. Theory Biosci 124, 199-212.

    Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Molecular Evolution: Springer, 115-149.

    Theissen G, Kim JT, Saedler H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43, 484-516.

    Theissen G, Saedler H. 2001. Plant biology. Floral quartets. Nature 409, 469-471.

    Tohda H. 1967. An embryological study of Hetaeria shikokiana, a saprophytic orchid in Japan. Sci. Rep. Tohuku Univ., ser. IV (Biol.) 33, 83-95.

    Tsai WC, Fu CH, Hsiao YY, Huang YM, Chen LJ, Wang M, Liu ZJ, Chen HH. 2013. OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol 54, e7.

    Wang YQ, Melzer R, Theissen G. 2010. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'. Plant J 64, 177-190.

    Weigel D, Meyerowitz EM. 1994. The ABCs of floral homeotic genes. Cell 78, 203-209.

    Yamada K, Saraike T, Shitsukawa N, Hirabayashi C, Takumi S, Murai K. 2009. Class D and B(sister) MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Mol Biol 71, 1-14.

    Yang X, Wu F, Lin X, Du X, Chong K, Gramzow L, Schilling S, Becker A, Theissen G, Meng Z. 2012. Live and let die - the B(sister) MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS One 7, e51435.

    Yasugi S. 1983. Ovule and embryo development in Doritis pulcherrima (Orchidaceae). Am. J. Bot., 555-560.

    Yeung EC, Law SK. 1989. Embryology of Epidendrum ibaguense. I. Ovule development. Can. J. Bot. 67, 2219-2226.

    Yin LL, Xue HW. 2012. The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell 24, 1049-1065.

    Yu H, Goh CJ. 2001. Molecular genetics of reproductive biology in orchids. Plant Physiol 127, 1390-1393.

    Zhang XS, O'Neill SD. 1993. Ovary and Gametophyte Development Are Coordinately Regulated by Auxin and Ethylene following Pollination. Plant Cell 5, 403-418.

    下載圖示 校內:2020-08-17公開
    校外:2020-08-17公開
    QR CODE