簡易檢索 / 詳目顯示

研究生: 莊世仁
Chuang, Shih-Jen
論文名稱: 運用蒙地卡羅光束追蹤技術模擬水槽中的輻射傳輸過程
Using Monte Carlo ray-tracing technique to simulate the radiative transfer process in a water tank
指導教授: 劉正千
Liu, Cheng-Chien
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 108
中文關鍵詞: 外顯光學性質固有光學性質前向蒙地卡羅光束追蹤法單一散射反照率朗伯表面
外文關鍵詞: forward Monte Carlo ray-tracing method, apparent optical properties, inherent optical properties, Lambertian surfaces, single scattering albedo
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上,水庫的水質監測方法主要是在少數的特定點進行量測,相當地耗時費力。如果能夠藉由遙測的手段進行水質監測,就能即時地掌握水庫的水質概況。然而,欲連結遙測資料與水質,必須先建立水中物質與相對應的光學性質之關係。要得到單一水質參數 對光學訊號的影響,可在實驗室進行水槽試驗,控制不同的水質參數。吾人藉由前向蒙地卡羅光束追蹤法(Forward Monte Carlo ray-tracing technique, FMCR)模擬水槽中的輻射傳輸過程,以模擬遙測儀器所測量的光學訊號。藉由此模式的模擬,可以發現固有光學性質(IOP)與外顯光學性質(AOP)之間的量化關係。
    根據前人研究(Liu and Woods, 2004),FMCR的概念為,將光束分為大量的光子,依據大量亂數以及各種現象的發生機率決定光子在水體中的行進路徑,最後得到的光場分布即為所有光子的整體貢獻。此模式的模擬條件為,邊界均為朗伯表面(Lambertian surfaces)的正立方體水槽,單一光源放置於水槽上方,感測器可放置在水槽的任意位置。模式可任意指定水體的IOP參數。
    吾人從無限深到有限深度的水體條件下,使用軟體Hydrolight驗證FMCR模式。加上水槽的側向邊界後,從模擬結果可以發現,調整模式參數後,將側向邊界設置在離光源較遠的距離,感測器放置在固定的位置,將邊界距離逐漸縮小,則感測器所偵測到的輻射量會逐漸增加。
    本研究調整模擬參數後,可得到輻射值變化的合理趨勢,例如:在較高的單一散射反照率以及邊界反射率的模擬條件下,感測器接收的輻射量較大。藉由FMCR模式可有系統地大量產生IOP與AOP的對照表,藉由此對照表可將量測的AOP得到相對應的IOP資訊。

    The general approach of monitoring the water quality in a reservoir relies on the point measurements made at ground stations, which is both time and labor consuming. Employing the technique of remote sensing, by contrast, would enable us to acquire a near-real-time and synoptic view of the entire reservoir. To relate the remote sensing data to the water quality, however, we need to establish the relationship between the water constituents and various optical properties. This can be investigated in a water tank with detailed measurements of optical properties for various water samples of controlled constituents. By employing the forward Monte Carlo ray-tracing (FMCR) technique to simulate the radiative transfer process in a water tank, we attempt to establish a quantitative relationship between the Inherent Optical Properties (IOP) and the Apparent Optical Properties (AOP).
    As described in the earlier work by Liu and Woods (2004), the basic principle of our FMCR model is to simulate a beam of light by a very large number of photons. Following the path of each photon, we can use a series of random numbers to determine the photon’s life history according to different probabilities for different phenomena. The final light field is the cumulative contribution of total photons. The water tank is a cubic box with Lambertian surfaces. One unit light comes from the top of the box and the detectors can be deployed at any place in the box to collect photons. For each simulation, the IOPs are specified by various constituent-optical models.
    We carefully validate our FMCR model against the commercial Hydrolight model for the case of infinitely deep bottom and the case of one-dimensional parallel bottom. The results verify the simulation of interaction between the photon and the Lambertian surface. After adding the walls of the box, the light near eight corners of the box is apparently brighter than the one simulated in the case without walls. This phenomenon is further enhanced as the size of box is reduced.
    From simulations of model, there are some reasonable phenomenons we could discover, like high single scattering albedo or high reflectance will lead to high radiance. This FMCR model can be employed to systematically investigate the relationship between IOPs and AOPs by running a comprehensive FMCR simulation to generate a look-up-table (LUT). This LUT would assist us to derive the IOPs directly from the measurements of AOPs in the future.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 viii 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 5 1.3 研究架構 6 第2章 文獻回顧 9 2.1 反演模式應用於水色光學 9 2.2 輻射傳輸模式 11 2.3 蒙地卡羅法之應用 12 2.4 水槽光學實驗 14 2.5 小結 16 第3章 研究方法 17 3.1 水色光學的基本理論 17 3.2 蒙地卡羅法在水體輻射光學模式之應用 22 光子入射水面的機率以及向量 22 光子在水體中兩次碰撞事件之間行進的直線距離 24 單次散射反照率 25 散射角度的決定 25 光子碰撞邊界後的反射機率與角度決定 26 3.3 記錄輻射量 27 水下光場座標系統 27 光子記錄角度間隔 28 3.4 一維蒙地卡羅輻射傳輸模式流程 30 3.5 三維蒙地卡羅輻射傳輸模式 31 3.6 小結 40 第4章 模式驗證與探討 41 4.1 驗證過程設計 41 4.2 無底部無側向邊界的模式驗證 45 4.3 有底部無側向邊界的模式探討 47 4.4 有底部有側向邊界的模式探討 51 4.5 三維輻射傳輸模式增加邊界效應的驗證 54 4.6 小結 56 第5章 結果討論 57 5.1 水槽座標定義與感測器感應角度說明 58 5.2 感測器大小對輻射值的影響 61 5.3 邊界反射率對輻射值的影響 62 5.4 感測器位置對輻射值的影響 63 5.5 單一散射反照率(Ω)對輻射值的影響 66 5.6 散射相函數對輻射值的影響 66 5.7 有無邊界對輻射值的影響 69 5.8 小結 71 第6章 結論與建議 72 6.1 結論 72 6.2 建議 83 參考文獻 86 附錄 附錄一 無底部無側向邊界模式絕對偏差值(光源入射角60度) 90 附錄二 無底部無側向邊界模式絕對偏差值(光源入射角30度) 92 附錄三 有底部無側向邊界模式絕對偏差值(光源入射角60度) 94 附錄四 有底部無側向邊界模式絕對偏差值(光源入射角30度) 96 附錄五 有底部無側向邊界模式絕對偏差值(更改模式IOP) 98 附錄六 三維模式絕對偏差值(2億顆光子) 100 附錄七 三維模式絕對偏差值(3億顆光子) 102 附錄八 有邊界與無邊界模式的絕對偏差值 104 附錄九 口試委員意見 105 表目錄 表 3.1 固有光學性質之定義公式表 21 表 5.1 模擬參數設定比較 59 表 5.2 本模擬參數列表 61 表 6.1 不同模式的計算時間比較表 83 圖目錄 圖 1.1 研究背景流程圖 3 圖 1.2 固有、外顯光學性質與水質參數之關係 4 圖 1.3 研究流程圖 8 圖 3.1 座標系統設定(改繪自Mobley,1994) 17 圖 3.2 立體角示意圖(改繪自Mobley,1994) 19 圖 3.3 輻射值量測儀器示意圖(改繪自Mobley,1994) 19 圖 3.4 Geometry used to define IOP(改繪自Mobley,1994) 20 圖 3.5 光子入射水面折射與反射示意圖(a)由大氣入射水體(b)由水體入射大氣 23 圖 3.6 光子在兩次碰撞事件間行進之直線距離(a,b) 24 圖 3.7 單次散射反照率 25 圖 3.8 散射角度示意圖 25 圖 3.9 反射角示意圖 26 圖 3.10 感測器角度示意圖 27 圖 3.11 感測器角度範例 28 圖 3.12 感測器角度畫分示意圖(改繪自Mobley,1994) 29 圖 3.13 光學深度ζ與幾何深度z(改繪自Mobley,1994) 29 圖 3.14 無底部無側向邊界流程圖(修改自Kirk,1981) 32 圖 3.15 無底部無側向邊界流程圖(續) (修改自Kirk,1981) 33 圖 3.16 有底部無側向邊界模式流程圖(修改自Kirk,1981) 34 圖 3.17 有底部有側向邊界流程圖 35 圖 3.18 水槽示意圖 36 圖 3.19 光子碰撞邊界 36 圖 3.20 碰撞邊界俯視圖 37 圖 3.21 碰撞邊界側視圖(續) 37 圖 3.22 碰撞邊界側視圖(續) 38 圖 3.23 碰撞邊界側視圖(續) 38 圖 3.24 碰撞邊界側視圖(續) 39 圖 3.25 碰撞邊界側視圖(續) 39 圖 3.26 碰撞邊界側視圖(續) 40 圖 4.1 驗證流程 44 圖 4.2 無底部無側向邊界模擬輻射值(60°) 45 圖 4.3 無底部無側向邊界偏差值(60°) 46 圖 4.4 無底部無側向邊界模擬輻射值(30°) 47 圖 4.5 無底部無側向邊界絕對偏差值(30°) 47 圖 4.6 有底部無側向邊界模式的模擬輻射值(60°) 48 圖 4.7 有底部無側向邊界error值(60度) 48 圖 4.8 有底部無側向邊界的模擬輻射值(30°) 49 圖 4.9 有底部無側向邊界模式偏差值(30°) 49 圖 4.10 不同IOP設定的模擬輻射值 50 圖 4.11 偏差值(不同IOP) 50 圖 4.12 三維模式模擬條件示意圖 52 圖 4.13 有底部有側向邊界輻射值(2億顆) 52 圖 4.14 有底部有側向邊界模式絕對偏差值(2億顆) 53 圖 4.15 有底部有側向邊界輻射值(3億顆) 54 圖 4.16 有底部有側向邊界模式絕對偏差值(3億顆) 54 圖 4.17 感測器位置示意圖 55 圖 4.18 不同水槽大小的模擬輻射值 56 圖 5.1 感測器方位角(φv)示意圖 58 圖 5.2 感測器垂直角(θv)示意圖 60 圖 5.3 感測器位置圖 60 圖 5.4 感測器大小不同的模擬輻射值 61 圖 5.5 不同邊界反射率的模擬輻射值 62 圖 5.6 不同感測器位置的模擬輻射值 64 圖 5.7 不同感測器位置的模擬輻射值(續) 65 圖 5.8 不同感測器位置的模擬輻射值(續) 65 圖 5.9 不同單一散射反照率的模擬輻射值 66 圖 5.10 不同角度的散射相函數 67 圖 5.11 不同散射相函數的模擬輻射值 68 圖 5.12 不同角度的散射相函數(Henyey-Greenstein公式) 69 圖 5.13 不同Henyey-Greenstein公式散射相函數的模擬輻射值 69 圖 5.14 有無邊界的輻射分布比較圖 70 圖 5.15 有無邊界的絕對偏差比較圖 71 圖 6.1 高濁度水體的模擬輻射值(不同側向邊界距離,邊界反射率0.2) 73 圖 6.2 高濁度水體的邊界效應(不同側向邊界距離,邊界反射率0.2) 74 圖 6.3 水體為純水的模擬輻射值(不同側向邊界距離,邊界反射率0.001) 75 圖 6.4 純水的邊界效應(不同側向邊界距離,邊界反射率0.001) 75 圖 6.5 水體為純水的模擬輻射值(不同側向邊界距離,邊界反射率0.2) 76 圖 6.6 純水的邊界效應(不同側向邊界距離,邊界反射率0.2) 77 圖 6.7 第四個案例模擬輻射值 77 圖 6.8 第四個案例的邊界效應 78 圖 6.9 感測器原始輻射值(第五個模擬) 79 圖 6.10 第五個模擬的邊界效應 79 圖 6.11 感測器原始輻射值(Bukata數據模擬二) 80 圖 6.12 感測器原始輻射值(Tyler量測之IOP數據) 80 圖 6.13 感測器原始輻射值(第七個模擬) 81 圖 6.14 第七個模擬的邊界效應 81 圖 6.15 感測器原始輻射值(第八個模擬) 82 圖 6.16 第八個模擬的邊界效應 82 圖 6.17 不同散射相函數與邊界反射率的輻射值 84 圖 6.18 利用輻射傳輸模式模擬水體特定物體的辨認 85

    Bannister, T. T., EMPIRICAL EQUATIONS RELATING SCALAR IRRADIANCE TO A, B/A, AND SOLAR ZENITH ANGLE, Limnology and Oceanography, 35(1), 173-177. (1990)
    Bielajew, A. F., Advanced Monte Carlo for radiation physics, particle transport simulation, and applications :proceedings of the Monte Carlo 2000 Conference, Lisbon, 23-26 October 2000, Springer, Berlin, 1-6. (2001)
    Buiteveld, H., et al. (1994), Optical properties of pure water, paper presented at Ocean Optics XII, SPIE, Bergen, Norway.
    Bukata, R. P., Optical properties and remote sensing of inland and coastal waters, CRC Press, Boca Raton, 103. (1995)
    Carder, K., Illumination and turbidity effects on observing faceted bottom elements with uniform Lambertian albedos, Limnology and Oceanography, 48(1), 355. (2003)
    Chang, C. H., et al., Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color, Opt. Express, 15(2), 252-265. (2007)
    Dadson, S. J., et al., Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426(6967), 648-651. (2003)
    Dekker, A. G., and H. J. Hoogenboom, The remote sensing of inland water quality., John Wiley & Sons Ltd., New York, 123-142. (1995)
    Gordon, H. R., Modeling and Simulating Radiative Transfer in the Ocean, Ocean Optics, 3-39. (1994)
    Haltrin, V. I., Monte Carlo modeling of light field parameters in ocean with Petzold laws of scattering, Proceedings of the Fourth International Conference Remote Sensing for Marine and Coastal Environments: Technology and Applications, I, 503-508. (1997)
    Han, L., Spectral Reflection with Varying Suspended Sediment Concentrations in Clear and Algae-Laden Waters, Photogrammetric Engineering & Remote Sensing, 63, 701-705. (1997)
    Karabulut, M., and N. Ceylan, The Spectral Reflectance Responses of Water with Different Levels of Suspended Sediment in The Presence of Algae, Turkish J. Eng. Env. Sci., 29, 351-360. (2005)
    Kirk, J. T. O., Monte Carlo procedure for simulating the penetration of light into natural waters, Division of Plant Industry, CSIRO, P. O. Box 1600, Canberra City, A.C.T. 2601. (1981)
    Lee, Z. P., et al., Remote Sensing of Inherent Optical properties: Fundamentals, Tests of Algorithms and Applications, IOCCG, Canada, 105-110. (2006)
    Liu, C. C., and J. D. Woods, Prediction of ocean colour: Monte Carlo simulation applied to a virtual ecosystem based on the Lagrangian Ensemble method, Int. J. Remote Sens., 25(5), 921-936. (2004)
    Mobley, C. D., A NUMERICAL-MODEL FOR THE COMPUTATION OF RADIANCE DISTRIBUTIONS IN NATURAL-WATERS WITH WIND-ROUGHENED SURFACES, Limnology and Oceanography, 34(8), 1473-1483. (1989)
    Mobley, C. D., Light and Water, Academic Press, Inc, California. (1994)
    Orlov, M. Y., et al., Monte-Carlo calculation of the gamma-ray dose distribution inside a wall of a building and in air, Atomic Energy, 94(6), 428-433. (2003)
    Ostlund, C., et al., Mapping of the water quality of Lake Erken, Sweden, from Imaging Spectrometry and Landsat Thematic Mapper, Science of the Total Environment, 268(1-3), 139-154. (2001)
    Oyama, Y., et al., A new algorithm for estimating chlorophyll-a concentration from multi-spectral satellite data in case II waters: a simulation based on a controlled laboratory experiment, Int. J. Remote Sens., 28(7-8), 1437-1453. (2007)
    Petzold, T. J., Volume Scattering Functions for Selected Ocean Waters, Light in the Sea, 152–174. (1977)
    Plass, G. N., and G. W. Kattawar, Monte Carlo Calculations of Light Scattering from Clouds, Appl. Opt., 7(3), 415-419. (1968)
    Plass, G. N., and G. W. Kattawar, Radiative Transfer in an Atmosphere-Ocean System, Appl. Opt., 8(2), 455-466. (1969)
    Plass, G. N., and G. W. Kattawar, Radiance and Polarization of the Earth's Atmosphere with Haze and Clouds, Journal of the Atmospheric Sciences, 28(7), 1187-1198. (1971)
    Plass, G. N., and G. W. Kattawar, Monte Carlo Calculations of Radiative Transfer in the Earth's Atmosphere-Ocean System: I. Flux in the Atmosphere and Ocean, Journal of Physical Oceanography, 2(2), 139-145. (1972)
    Pope, R. M., and E. S. Fry, Absorption spectrum (380-700 nm) of pure water .2. Integrating cavity measurements, Applied Optics, 36(33), 8710-8723. (1997)
    Press, W. H., et al., Numerical Recipes in C++: The Art of Scientific Computing, Cambridge University Press, United States of America,278-320. (2002)
    Robinson., I. S., Satellite oceanography :an introduction for oceanographers and remote-sensing scientists, Chichester, West Sussex, England ;Halsted Press, New York, 22.(1985)
    Sathe, P. V., and S. Sathyendranath, A FORTRAN-77 PROGRAM FOR MONTE-CARLO SIMULATION OF UPWELLING LIGHT FROM THE SEA, Computers & Geosciences, 18(5), 487-507. (1992)
    Sathyendranath, S., et al., Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters., IOCCG, Canada, 23. (2000)
    Sears, F. W., Principles of Physics: 3. Optics, Addison-Wesley, Cambridge, Mass,167-176. (1949)
    Tolk, B. L., Han, L. , and Rundquist, D. C. , The impact of bottom brightness on spectral reflectance of suspended sediments, INT. J. REMOTE SENSING, 21, 2259-2268. (2000)
    Tyler, J. E., Radiance distribution as a function of depth in an underwater environment, Bull. Scripp. Inst. Oceanogr., 7(5), 363-412. (1960)
    Zhai, P. W., et al., Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method, Appl. Opt., 47(8), 1037-1047. (2008)
    王奕婷, 流體在微渠道流動之數值模擬, 國立中山大學機械與機電工程學系研究所. (2002)
    李三畏, 集水區的經營治理, 中興工程基金會, 頁13. (2005)
    金紹興.虞國興, 永續水資源, 中興工程基金會. (2005)
    紀金輝, 蒙地卡羅方法於臨床光子射束劑量分佈研究, 中台醫護技術學院放射科學研究所. (2007)
    黃慶祥, 水庫水質與光學性質模式之建立及其應用, 國立成功大學環境工程學系. (2006)
    經濟部水利署 (2006), 水資源供需情勢統計調查方式改善與彙編 94-96 年各項用水統計報告(2/3)總報告.
    廖福全.趙家民, 桃園地區水資源異常之供水因應策略, 空大學訊. (2007)
    潘國樑, 遙測學大綱, 成陽出版股份有限公司, 頁7. (2006)
    蔡在宗., 含砂水體反射率峰值對應波長偏移現象研究, 成功大學碩士論文. (2007)
    韓震.惲才興.蔣雪中, 懸浮泥沙反射光譜特性實驗研究, 水利學報, 第七期, 頁118-122. (2003)

    下載圖示 校內:2009-08-29公開
    校外:2009-08-29公開
    QR CODE