簡易檢索 / 詳目顯示

研究生: 李凱笙
Li, Kai-Sheng
論文名稱: 適應式迭代學習算則於機械臂追跡與循跡控制之應用
Adaptive Iterative Learning Algorithm to Robotic Tracking and Contouring Problems
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 138
中文關鍵詞: 適應式迭代學習控制追跡控制循跡控制
外文關鍵詞: adaptive iterative learning control, tracking control, contouring control
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 迭代學習理論是以具重複工作性質的工業機械人為背景所提出,傳統迭代學習控制成功應用之關鍵需有效克服系統的不確定性和具有重複性質的外擾。隨著迭代學習控制的深入研究,其研究內容廣泛包含學習控制律與學習系統的研究,學習的收斂性、學習控制過程的強健性,收斂速度及初值問題等。另一方面,基於傳統迭代學習控制的缺失,近年來適應性學習等控制技術越來越多運用於迭代學習控制,因此產生各種新的迭代學習算則。爲了克服具變動性的外擾問題,不連續的控制手段將引入了適應性迭代學習控制架構,以增加其閉迴路的強健性,並獲得良好的追蹤性能。由於實際的物理限制,高頻率的切換控制難以被實踐且將會導致非期望的控制結果。因此,建構於適應性迭代學習算則的設計理念,本論文將致力於設計無顫振的簡易學習控制架構,以消除嚴重的控制顫振,並確保閉迴路控制系統的穩定性與強健性;此外亦提出新的適應式學習律,使得追蹤誤差可以在迭代軸達到快速收斂的目標。就起始定位問題而言,將引入起始修正技巧來設計追蹤誤差方程式,得以有效的克服可變動的起始誤差。在本文中,除了探討一般機械臂的動態關節追蹤問題外,也針對機械臂末端所在位置的工作空間中,具有不確定性質的順向運動學問題加以研究。最終的目標是將本文的控制理論推展至廣泛具有重複性的機械系統運動控制。

    The iterative learning control (ILC) theory is proposed for industry robotic systems under repeatable control environment. The traditional ILC is proposed to handle systems with uncertainties and repeat disturbances. It improves control system performance by repetition learning in a finite time interval. Theoretical analysis, design and applications have been widely exploited. In recent years, learning controller approaches to cope with the disadvantage of traditional ILC in association with other control method, such as adaptive learning technique, are proposed. In adaptive iterative learning control (AILC) schemes, the discontinuous control technique is utilized to deal with varying disturbances and improve response of the closed-loop control system. Due to actual physical limits, the high-frequency switching control is difficult to be realized and also leads to undesired control results. Based on the design concept of AILC, this dissertation devotes to develop a non-chattering learning control scheme to avoid serious control chattering. A simple control scheme to guarantee stability and robustness of the closed-loop system is proposed. Fast convergence of tracking error is achieved with the proposed adaptive learning law in the iteration domain. To deal the initial resetting condition problem in ILC, the error function with initial rectifying action is utilized for the initial error variations. For robotic manipulator tracking problems, tracking controllers not only compensate dynamic uncertainties in the joint-space but also suppress the influence of both kinematic and dynamic uncertainties in the task-space. The results of this dissertation obtained can be applied to motion control of a wide class of dynamic system with repetitive.

    ABSTRACT IN CHINESE i ABSTRACT iii ACKNOWLEDGEMENTS v CONTENTS vi LIST OF TABLES x LIST OF FIGURES xi CHAPTER I. INTRODUCTION 1 1.1 Motivation 1 1.2 Literature review 2 1.2.1 Review of iterative learning control 2 1.2.2 Review of adaptive iterative learning control 4 1.2.3 Review of initial resetting condition problem for iterative learning control 5 1.3 Research objectives 7 II. ITERATIVE LEARNING CONTROL 10 2.1 Introduction 10 2.2 Iterative learning controller Scheme 12 2.2.1 Previous cycle learning controller (PCL) Scheme 13 2.2.2 Current cycle learning controller (CCL) scheme 15 2.2.3 A combination of PCL and CCL in the ILC (PCCL) scheme 16 2.3 Adaptive iterative learning control (AILC) for a Robotic Manipulator 17 2.3.1 Adaptive control 18 2.3.2 Adaptive iterative learning control 21 2.3.3 Adaptive iterative learning control with composite energy function 23 2.4 Initial resetting condition problem in ILC 27 2.4.1 Initial rectifying action in learning controller 27 2.4.2 Initial rectifying action in error function 28 2.4.3 Initial rectifying action in desired reference trajectory 29 III. OBSERVER-BASED ROBUST AILC FOR THE ROBOTIC MANIPULATOR SYSTEM 31 3.1 Introduction 31 3.2 Mathematical model of the dynamic robotic manipulator system 32 3.3 The observer-based learning controller Scheme 34 3.4 Performance and stability analysis of the tracking control System 36 3.4.1 The non-increasing property of the composite energy function 38 3.4.2 The boundedness property of the system state and the control signal 40 3.4.3 The convergence of the tracking error function 42 3.5 Numerical simulations 44 3.5.1 Learning for identical initial state errors 46 3.5.2 Learning for perturbed initial state errors 49 3.6 Discussions 51 IV. DYNAMIC ITERATION TRACKING CONTROL FOR THE UNCERTAIN ROBOTIC MANIPULATOR 52 4.1 Introduction 52 4.2 Problem formulation 53 4.3 Main result of the proposed robust PI controller design 55 4.4 Performance analysis of the tracking control System 57 4.4.1 The non-increasing property of the composite energy function 58 4.4.2 The boundedness property of the system state and the control signal 59 4.4.3 The convergence of the tracking error function 61 4.4.4 The stability analysis of the estimator 62 4.5 Numerical simulations 63 4.6 Discussions 70 V. TASK-SPACE TRACKING CONTROL FOR UNCERTAIN ROBOTS BASED ON ITERATIVE LEARNING 71 5.1 Introduction 71 5.2 Robot kinematic and problem formulation 72 5.3 Main result of the proposed adaptive iterative Jacobian tracking controller 76 5.4 Performance and stability analysis of the task-space tracking control system 78 5.4.1 The non-increasing property of the composite energy function 79 5.4.2 The boundedness property of the system state and the control signal 82 5.4.3 The convergence of the task-space tracking error function 86 5.5 Numerical simulations 87 5.6 Discussions 94 VI. ITERATIVE CONTOURING CONTROL FOR ROBOTIC SYSTEMS WITH KINEMATIC UNCERTAINTIES 95 6.1 Introduction 95 6.2 Description of contour error: A two dimensional case 96 6.3 Robust contouring controller design with uncertain kinematic 98 6.3.1 Problem formulation of contour error dynamic 98 6.3.2 The proposed robust iterative contouring control scheme 101 6.3.3 Performance analysis of the robust iterative contouring control system 103 6.4 Adaptive iterative kinematic contouring control scheme 107 6.4.1 Main results of the proposed control scheme 107 6.4.2 Performance analysis of the adaptive iterative kinematic contouring control system 109 6.5 Numerical simulations 115 6.5.1 Robust iterative contouring control scheme 116 6.5.2 Adaptive iterative kinematic contouring control scheme 119 6.6 Discussions 122 VII. CONCLUSION 123 7.1 Discussions and conclusions 123 7.2 Suggestions for future researches 125 REFERENCES 126 PUBLICATION LIST 136 VITA 138

    Arimoto S., “Learning control theory for robotic motion,” Adaptive Control and Signal Processing, Vol. 4, No. 6, pp. 543-564 (1990).

    Arteaga M.A., Castillo-Sanchez A. and Parra-Vega V., “Cartesian control of robots without dynamic model and observer,” Automatica, Vol. 42, No. 3, pp. 473-480 (2006).

    Ahn H.S., Chen Y.Q. and Moore K.L., “Iterative learning control: brief survey and categorization,” IEEE Trans. Syst. Man Cybern. C, Appl., Vol. 37, No. 6, pp.1099–1110 (2007).

    Arimoto S., Kawamura S. and Miyazaki F., “Bettering operation of robots by learning,” Journal of Robotic Systems, Vol. 1, No. 2, pp.123-140 (1984).

    Arimoto S., Naniwa T. and Suzuki H., “Selective learning control with a forgetting factor for robotic motion control,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, pp. 728-733 (1991).

    Bondi P., Casalino G. and Gambardella L., “On the iterative learning control theory for robotic manipulators,” IEEE Journal of Robotics and Automation, Vol. 4, No. 1, pp. 14-22 (1988).

    Bristow D.A., Tharayil M. and Alleyne A.G., “A survey of iterative learning control,” IEEE control systems magazine, Vol. 26, No. 3, pp.97–114 (2006).

    Chien C.J., “A combined adaptive law for fuzzy iterative learning control of nonlinear systems with varying control tasks,” IEEE Transactions on Fuzzy Systems, Vol. 16, No. 1, pp.40-51 (2008).

    Chien C.J., Hsu C.T. and Yao C.Y., “Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors,” IEEE Transactions on Fuzzy Systems, Vol. 12, No. 5, pp.724-732 (2004).

    Chi R., Hou Z. and Xu J., “Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition,” Automatica, Vol. 44, pp. 2207-2213 (2008).

    Choi J.Y. and Lee J.S., “Adaptive iterative learning control of uncertain robotic systems”, Inst. Elect. Eng. Proc., Vol. 147, No.2, pp. 217-223 (2000).

    Cheah C.C. and Liaw H.C., “Inverse Jacobian regulator with gravity compensation: Stability and experiment,” IEEE Transactions on Robotics, Vol. 21, No. 4, pp.741-747 (2005).

    Cheah C.C., Liu C., and Slotine J.J.E., “Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models,” IEEE Transactions on Automatic Control, Vol. 51, No. 6, pp. 1024-1029 (2006).

    Chien C.J. and Tayebi A., “Further results on adaptive iterative learning control of robot manipulators,” Automatica, Vol. 44, No. 3, pp.830–837 (2008).

    Cheah C.C. and Wang D., “Learning impedance control for robotic manipulators,” IEEE Transactions on Robotics and Automation, Vol. 14, No. 3, pp. 452-465 (1998).

    Chuang H.Y. and Chang Y.C., “A novel contour error compensator for 3-PRPS platform,” Journal of Robotic Systems, Vol. 17, No. 5, pp. 273-289 (2000).

    Chien C.J. and Yao C.Y., “An output-based adaptive iterative learning controller for high relative degree uncertain linear systems,” Automatica, Vol. 40, pp. 145-153 (2004).

    Dixon, W. E., “Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics,” IEEE Transactions on Automatic Control, Vol. 52, No. 3, pp.488-493 (2007).

    Fang R.W. and Chen J.S., “A Cross-Coupling Controller Using an Scheme and its Application to a Two-Axis Direct-Drive Robot”, Journal of Robotic Systems, Vol. 19, No. 10, pp. 483-487 (2002a).

    Fang R.W. and Chen J.S., “Cross-coupling control for a direct-drive robot,” JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, Vol. 45, No. 3, pp. 749-757 (2002b).

    French M. and Rogers E., “Nonlinear iterative learning by an adaptive Lyapunov technique”, Proceedings of the 37th Conference on Decision and Control, Florida, USA, pp. 175–180 (1998).

    Garden M., “Learning control of actuators in control systems,” U.S. Patent 3555252 (1971).

    Hauser J.E., “Learning control for a class of nonlinear systems,” Proceedings of 26th IEEE Conference on Decision and Control, Los Angeles, CA, pp. 859-860 (1987).

    Heinziger G., Fenwick D., Paden B. and Miyazaki F., “Stability of learning control with disturbances and uncertain initial conditions,” IEEE Transactions on automatic control, Vol. 37, No. 1, pp. 110-114 (1992).

    Hsieh C., Lin K.C. and Chen C.L., “Contour Controller Design for Two-dimensional Stage System with Friction,” Material Science Forum, Vol. 505-507, pp.1267-1272 (2006).

    Jiang Y.A., Clements D.J., Hesketh T. and Park J.S., “Adaptive Learning Control of Robot Manipulators in Task Space,” Proceedings of the American Control Conference, Baltimore, MD, pp. 207-211 (1994).

    Kuc T.Y. and Lee J.S., “An adaptive learning control of uncertain robotic systems,” Proceedings of the 30th Conference on Decision and Control, Brighton, England, pp. 1206-1211 (1991).

    Kuc T.Y., Lee J.S. and Nam K., “An iterative learning control theory for a class of nonlinear dynamic systems,” Automatica, Vol. 28, No. 6, pp. 1215-1221 (1992).

    Kawamura S., Miyazaki F. and Arimoto S., “Realization of robot motion based on a learning-method”, IEEE Transactions on Systems Man and Cybernetics, Vol. 18, No. 1, pp. 126-133 (1988).

    Lee H.S. and Bien Z., “Initial condition problem of learning control,” IEE Proceedings-D, Vol. 138, No. 6, pp. 525-528 (1991).

    Lee H.S. and Bien Z., “Study on robustness of iterative control with non-zero initial error,” International Journal of Control, Vol. 64, pp. 354-359 (1996).

    Liu C. and Cheah C.C., “Task-space adaptive setpoint control for robots with uncertain kinematics and actuator model,” IEEE Transactions on Automatic Control, Vol. 50, No. 11, pp.1854-1860 (2005).

    Liu C., Cheah C.C. and Slotine J.J.E., “Adaptive Jacobian tracking control of rigid-link electrically driven robots based on visual task-space information,” Automatica, Vol. 42, pp. 1491-1501 (2006).

    Li X.D., Chow T.W.S., Ho J.K.L. and Zhang J., “Iterative learning control with initial rectifying action for nonlinear continuous systems,” IET Control Theory and Applications, Vol. 3, No. 1, pp. 49-55 (2009).

    Liuzzo S. and Tomei P., “A global adaptive learning control for robotic manipulators,” Automatica, Vol. 44, No. 5, pp.1379-1384 (2008).

    Oh S.R., Bien Z.N. and Suh I.H., “An iterative learning control method with application for the robot manipulator,” IEEE Journal of Robotics Automation, Vol. 4, No. 5, pp. 508-514 (1988).

    Park K.H. and Bien Z., “A generalized iterative learning controller against initial state error,” International Journal of Control. Vol. 73, No. 10, pp. 871-881 (2000).

    Park K.H., Bien Z. and Hwang, “A study on the robustness of a PID-type iterative learning controller against initial state error,” International Journal of Systems Science, Vol. 30, No. 1, pp. 49-59 (1999).

    Park B.H., Kuc T.Y. and Lee J.S., ”Adaptive learning control of uncertain robotic systems”, International Journal of Control, Vol. 65, No. 5, pp. 725-744 (1996).

    Saab S.S., “On the P-type learning control,” IEEE Transactions on Automatic Control, Vol. 39, No. 11, pp. 2298-2302 (1994).

    Sun M.X., Ge S.S., and Mareels I.M.Y., “Adaptive Repetitive Learning Control of Robotic Manipulators Without the Requirement for Initial Repositioning”, IEEE Trans. Robotics, Vol. 22, No. 3, pp. 563-568 (2006).

    Sun D. and Mills J.K., “Adaptive learning control of robotic systems with model uncertainties,” Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, pp. 1847-1852 (1998).

    Sun D. and Mills J.K., “High-accuracy trajectory tracking of industrial robot manipulator using adaptive-learning scheme,” Proceedings of the American Control Conference, San Diego, California, pp. 1935-1939 (1999).

    Sun D. and Mills J.K., “Performance improvement of industrial robot trajectory tracking using adaptive-learning scheme,” Journal of Dynamic Systems, Measurement, and Control, Vol. 121, pp. 285-292 (1999).

    Spong M.W. and Vidyasagar M., “Robot dynamics and control,” 1989.

    Sun M. and Wang D., “Initial condition issues on the iterative learning control for non-linear systems with time delay,” International Journal of Systems Science, Vol. 32, No, 11, pp. 1365-1375 (2001).

    Sun M. and Wang D., “Sampled-data iterative learning control for nonlinear systems with arbitrary relative degree,” Automatica, Vol. 37, pp. 283-289 (2001).

    Sun M. and Wang D., “Iterative learning control with initial rectifying action,” Automatica, Vol. 38, No. 7, pp. 1177-1182 (2002).

    Tayebi A., “Adaptive iterative learning control for robot manipulators”, Automatica, Vol. 40, pp. 1195-1203 (2004).

    Tatlicioglu E., Braganza D., Burg T.C. and Dawson D.M., “Adaptive control of redundant robot manipulators with sub-task objectives,” Robotica, Vol. 27, pp. 873-881 (2009).

    Tayebi A. and Islam S., “Adaptive iterative learning control for robot manipulators: Experimental results”, Control Engineering Practice, Vol. 14, pp. 843-851 (2006).

    Tso S.K. and Ma Y.X., “Cartesian-based learning control for robots in discrete-time formulation,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 22, No. 5, pp. 1198-1204 (1992).

    Tian Y.P. and Yu X., “Robust learning control for a class of nonlinear systems with periodic and aperiodic uncertainties,” Automatica, Vol. 39, pp. 1957-1966 (2003).

    Uchiyama M., “Formulation of high-speed motion pattern of a mechanical arm by trial,” Transactions Society of Instrument and Control Engineers, Vol. 14, pp. 706-712 (1978).

    Xu J.X. and Qu Z., “Robust learning control for a class of nonlinear systems,” Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, pp. 2484-2489 (1996).

    Xu J.X. and Qu Z., “Robust iterative learning control for a class of nonlinear systems,” Automatica, Vol. 34, No. 8, pp. 983-988 (1998).

    Xu J.X., Lee T.H. and Zhang H.W., “Analysis and comparison of iterative learning control schemes,” Engineering Applications of Artificial Intelligence, Vol. 17, pp. 675-686 (2004).

    Xu J.X. and Viswanathan B., “Adaptive robust iterative learning control with dead zone scheme,” Automatica, Vol. 36, No. 1, pp.91–99 (2000).

    Xu J.X., Wang X.W. and Lee T. H., “Analysis of continuous iterative learning control system using current cycle feedback,” Proceedings of the American Control Conference, Seattle, Washington, pp. 4221-4225 (1995).

    Xu J.X. and Xu J., “On iterative learning from different tracking tasks in the presence of time-varying uncertainties,” IEEE Trans. Syst. Man Cybern. B, Cybern., Vol. 34, No. 1, pp.589–597 (2004).

    Yeh S.S. and Hsu P.L., “Analysis and Design of Integrated Control for Multi-Axis Motion Systems”, IEEE Trans. Contr. Syst. Technol., Vol. 11, No. 3, pp.375-382 (2003).

    Yang S.Y., Luo A. and Fan X.P., “Adaptive robust iterative learning control for uncertain robotic systems,” Control Theory Appl., Vol. 20, No. 5, pp.707–712 (2003).

    Zergeroglu E., Dawson D.D., Walker I.W. and Setlur P., “Nonlinear tracking control of kinematically redundant robot manipulators,” IEEE ASME Transactions on Mechatronics, Vol. 9, No. 1, pp. 129-132 (2004).

    于少娟、齊向東和吳聚華,迭代學習控制理論及運用,第111-145頁,機械工業出版社,北京,2005。

    謝勝利、田森平和謝振東,迭代學習控制的理論與運用,第206-281頁,科學出版社,北京,2005。

    無法下載圖示 校內:2015-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE