簡易檢索 / 詳目顯示

研究生: 簡文昱
Chien, Wen-Yu
論文名稱: 探討鹼土族正矽酸鹽(Sr1-xBax)2SiO4固溶體晶體結構變化
A study of the crystal structural variations related to alkaline earth orthosilicate (Sr1-xBax)2SiO4 solid solutions
指導教授: 龔慧貞
Kung, Jennifer
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: (Sr1-xBax)2SiO4固溶體Rietveld method陽離子佔據格位分佈調整型結構
外文關鍵詞: (Sr1-xBax)2SiO4, solid solution, Rietveld method, site occupancy, modulated incommensurate structure
相關次數: 點閱:73下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (Sr1-xBax)2SiO4固溶體可作為螢光粉主晶體結構材料,然而,目前尚未有此系列固溶體之詳細晶體結構變化資料。本研究利用固態反應法合成一系列(Sr1-xBax)2SiO4固溶體粉末樣品,並利用X光粉末繞射圖譜和Rietveld method進行晶體結構精算,其資料包含晶格常數、結構參數、陽離子(Sr2+、Ba2+)佔據格位分佈趨勢隨化學成份變化之關係,並嘗試觀察此系列固溶體之拉曼光譜隨化學成份變化影響。
    由X光粉末繞射圖譜顯示本研究合成之一系列(Sr1-xBax)2SiO4固溶體粉末樣品皆以斜方晶系ortho相單一結構為主,但由X光粉末繞射圖譜的變化顯示,在Ba2+離子含量低於約25 mole%的固溶體樣品(X≦0.25)還觀察到數根不屬於斜方晶系ortho相結構的繞射峰,利用高溫X光粉末繞射實驗觀察額外繞射峰隨溫度變化的消長,驗證其為調整型結構(modulated structure)的衛星繞射峰,並由JANA2006軟體分析其繞射峰對應的米勒指數,此外,由衛星繞射峰值強度減弱的現象顯示當Ba2+離子含量約在25 mole%以下時為調整型結構IC相。
    並從Rietveld method晶體結構精算結果觀察到此系列固溶體晶體結構中,Sr2+/Ba2+陽離子具有格位優選的特性。因不同格位在三維晶體結構中具有不同的排列方式,其陽離子格位優選影響配位環境中之特定鍵長變化較為顯著,進而造成特定方向之晶格常數變化具有非線性的行為。
    本研究首次在(Sr1-xBax)2SiO4固溶體粉末樣品中,觀察到Sr2+/Ba2+陽離子具有格位優選的特性,以及調整型結構與固溶體陽離子比例變化的關係,期望這些結果應可對此系列之螢光粉的發光波長變化機制提供更進一步的了解。

    The crystal structural variations in Strontium-Barium orthosilicate (Sr1-xBax)2SiO4 solid solution series as a function of the chemical composition were studied by using X-ray powder diffraction and analyzed using the Rietveld method, which enables us to obtain the information of crystal structure including cell parameters, cation distribution and structure parameters. The Rietveld method results indicate the cation distribution has the preference of Ba2+ ions occupied to the ten-coordinated site M(1) and Sr2+ ions occupied to the nine-coordinated site M(2) in the solid solutions. Due to the two lattice sites have different site environment, the lattice constants increase nonlinearly with increasing Ba-content should be attributed to the variations of the specific bond lengths in the specific direction of the lattice.
    In this study, the satellite diffraction peaks of the incommensurate structure are observed from the X-ray powder diffraction data. The results indicate the crystal structure in the range below values of around 25 mol% Ba2SiO4 (X≦0.25) should be an incommensurate structure.

    目錄 摘要 I 英文摘要 II 誌謝 VI 表目錄 IX 圖目錄 X 第一章、緒論 1 1-1、前言 1 1-2、研究目的 3 1-3、前人文獻回顧 3 1-3-1、(Sr,Ba)2SiO4晶體結構 3 1-3-2、(Sr,Ba)2SiO4陽離子配位環境 5 1-3-3、M2SiO4拉曼光譜 5 1-3-4、(Sr,Ba)2SiO4晶體結構與發光波長關係 7 第二章、基礎理論 14 2-1、固溶體晶體結構 14 2-2、調整型結構 15 2-3、如何利用繞射圖譜資料解析晶體結構 16 第三章、實驗步驟與研究方法 20 3-1、實驗流程 20 3-2、樣品製備 20 3-3、化學成份分析 21 3-3-1、能量散射式光譜儀實驗 21 3-4、晶體結構分析 22 3-4-1、實驗室光源粉末繞射實驗 22 3-4-2、晶體結構精算 23 3-4-3、晶體結構精算過程以及誤差分析 25 3-4-4、調整型結構波向量q的分析方法 26 3-5、拉曼光譜實驗 26 第四章、實驗結果 34 4-1、化學成份分析 34 4-1-1、EDS實驗分析結果 34 4-1-2、EDS分析化學成份之誤差可能因素 35 4-2、XRD晶相鑑定 36 4-3、Rietveld Method精算結果 37 4-3-1、晶體結構精算結果與前人單晶資料比對 37 4-3-2、晶格常數變化分析 38 4-4、調整型結構IC相繞射峰分析 39 4-4-1、高溫X光粉末繞射實驗 40 4-4-2、調整型結構繞射峰指派 41 4-5、拉曼光譜分析 41 第五章、討論與總結 68 5-1、Sr2+、Ba2+陽離子佔據格位分佈 68 5-2、陽離子佔據格位與相關鍵長之關係 70 5-2-1、陽離子佔據格位與平均配位鍵長變化之關係 70 5-2-2、陽離子佔據格位與十配位鍵長變化之關係 70 5-2-3、陽離子佔據格位與九配位鍵長變化之關係 71 5-2-4、矽氧四面體之矽氧鍵長變化與化學成份之關係 71 5-3、晶格常數變化與陽離子配位環境之關係 72 5-4、螢光粉發光波長與晶體結構變化之關係 73 5-5、調整型結構與矽氧四面體之關係 74 5-6、總結與未來研究方向 76 參考文獻 89 附錄一、拉曼光譜之峰值解析與擬合情況 94 附錄二、繞射面結構因子計算過程 100   表目錄 表1-1、ortho - (Sr0.95Ba0.05)2SiO4晶胞參數與原子位置資料 10 表1-2、Mg2SiO4拉曼峰值指派 12 表1-3、矽氧四面體內部矽氧振動模式分析 13 表3-1、樣品合成之起始原料資訊 29 表3-2、合成樣品之化學成份 29 表3-3、本研究利用NIST標準品之晶格常數誤差分析 33 表4-1、(Sr1-xBax)2SiO4固溶體樣品化學成份分析 43 表4-2、(Sr1-xBax)2SiO4固溶體之Rietveld method分析結果 52 表4-3、(Sr1-xBax)2SiO4固溶體之原子位置 53 表4-4、(Sr1-xBax)2SiO4固溶體之陽離子配位鍵長 54 表4-5、(Sr1-xBax)2SiO4固溶體之矽氧四面體鍵長、鍵角 55 表4-6、本研究Sr95Ba5、Ba100粉末樣品精算結果之鍵長與前人單晶資料比較 56 表4-7、(Sr1-xBax)2SiO4固溶體拉曼峰值分析結果 64   圖目錄 圖1-1、Sr2SiO4-Ba2SiO4之相關係圖 9 圖1-2、Sr2SiO4之mono相和ortho相晶體結構示意圖比較 9 圖1-3、Sr2SiO4三種結構在[001]方向的繞射圖譜 10 圖1-4、ortho相之陽離子排列結構示意圖 11 圖1-5、ortho相之陽離子配位環境示意圖 11 圖1-6、Mg2SiO4各振動模的頻段範圍 12 圖1-7、矽氧四面體內部振動模示意圖 13 圖2-1、Bragg’s Law 之幾何關係圖 19 圖3-1、實驗流程圖 28 圖3-2、X光粉末繞射儀(Bruker D8 Advance) 30 圖3-3、旋轉樣品槽示意圖 30 圖3-4、不同旋轉角度Sr50Ba50樣品之X光粉末繞射圖譜 31 圖3-5、實驗室光源現地高溫XRD實驗設備(Bruker D8 Discover) 32 圖3-6、Rietveld method 精算流程圖 32 圖3-7、顯微拉曼光譜儀器 33 圖4-1-1、Sr50Ba50樣品之背向散射電子影像圖(BEI) 44 圖4-1-2、Sr25Ba75樣品之背向散射電子影像圖(BEI) 44 圖4-1-3、(Sr1-xBax)2SiO4固溶體樣品之能量散射式光譜儀分析光譜圖 45 圖4-2-1、固態反應法合成(Sr1-xBax)2SiO4一系列樣品之X光粉末繞射圖譜 46 圖4-2-2、三根不屬於ortho相晶體結構模型之繞射峰,存在於Ba2+離子含量為ortho- Sr100至Sr75Ba25的樣品 47 圖4-3-1、ortho-Sr100晶體結構精算擬合結果 48 圖4-3-2、Sr97.5Ba2.5晶體結構精算擬合圖形 48 圖4-3-3、Sr95Ba5晶體結構精算擬合圖形 49 圖4-3-4、Sr85Ba15晶體結構精算擬合圖形 49 圖4-3-5、Sr75Ba25晶體結構精算擬合圖形 50 圖4-3-6、Sr50Ba50晶體結構精算擬合圖形 50 圖4-3-7、Sr25Ba75晶體結構精算擬合圖形 51 圖4-3-8、Ba100晶體結構精算擬合圖形 51 圖4-3-9、(Sr1-xBax)2SiO4固溶體樣品之晶格常數變化率 57 圖4-4-1、ortho-Sr100樣品中不屬於Pmnb結構之八根繞射峰值位置(紅色圓點)和d-spacing(d) 58 圖4-4-2、mono-Sr100樣品擬合圖譜結果 59 圖4-4-3、mono-Sr100樣品X光粉末繞射升溫實驗圖譜與(Sr1-xBax)2SiO4固溶體比對 59 圖4-4-4、Sr95Ba5樣品之X光粉末繞射升溫實驗圖譜比對 60 圖4-4-5、調整型結構IC相之Sr100樣品對應(hklm)晶面之指標繞射峰結果 61 圖4-5-1、(Sr1-xBax)2SiO4固溶體拉曼光譜峰值分析(800-1000cm-1) 62 圖4-5-2、(Sr1-xBax)2SiO4固溶體拉曼光譜峰值分析(300-600cm-1) 63 圖4-5-3、IC -Sr100和mono-Sr100拉曼光譜比較 65 圖4-5-4、Sr100拉曼光譜之800-1000cm-1波段峰值解析與擬合情況 66 圖4-5-5、Sr100拉曼光譜之450-600cm-1波段峰值解析與擬合情況 67 圖5-1-1、(Sr1-xBax)2SiO4固溶體樣品之Ba2+離子含量對佔據格位M(1)、M(2)之趨勢線 77 圖5-1-2、Sr50Ba50之Sr2+、Ba2+離子均勻分佈在十配位和九配位擬合圖形 78 圖5-1-3、Sr50Ba50之Ba2+離子完全佔據九配位,Sr2+離子完全佔據十配位之擬合圖形 78 圖5-1-4、Sr50Ba50之Ba2+離子完全佔據十配位,Sr2+離子完全佔據九配位之擬合圖形 79 圖5-1-5、Sr50Ba50之Sr2+、Ba2+離子精算後結果之擬合圖形 79 圖5-1-6、低角度區域繞射峰(011)、(101)&(002)繞射峰值強度隨化學成份變化作圖 80 圖5-1-7、計算低角度結構因子強度F2隨化學成份變化關係 80 圖5-2-1、(Sr1-xBax)2SiO4樣品之陽離子十配位M(1)和九配位M(2)平均鍵長增加量 81 圖5-2-2、(Sr1-xBax)2SiO4樣品之陽離子十配位M(1)和九配位M(2)平均鍵長增加率 81 圖5-2-3、(Sr1-xBax)2SiO4樣品之十配位陽離子M(1)各鍵長變化量 82 圖5-2-4、(Sr1-xBax)2SiO4樣品之十配位陽離子M(1)各鍵長變化率 82 圖5-2-5、(Sr1-xBax)2SiO4樣品之九配位陽離子M(2)各鍵長變化量 83 圖5-2-6、(Sr1-xBax)2SiO4樣品之九配位陽離子M(2)各鍵長變化率 83 圖5-2-7、(Sr1-xBax)2SiO4樣品之矽氧四面體鍵長變化量 84 圖5-3-1、十配位陽離子配位環境關係示意圖 85 圖5-3-2、九配位陽離子配位環境關係示意圖 85 圖5-4、(Sr1-xBax)2SiO4:Eu2+固溶體螢光粉發光波長變化 86 圖5-5-1、(Sr1-xBax)2SiO4固溶體拉曼內模峰值變化 87 圖5-5-2、(Sr1-xBax)2SiO4高頻波段(800-1000cm-1)拉曼圖譜變化 88 圖5-5-3、(Sr1-xBax)2SiO4中高頻波段(450-600cm-1)拉曼圖譜變化 88

    參考文獻
    英文部分:

    Baginskiy, I., R. S. Liu, C. L. Wang, R. T. Lin and Y. J. Yao (2011). "Temperature Dependent Emission of Strontium-Barium Orthosilicate (Sr2-xBax)SiO4:Eu2+ Phosphors for High-Power White Light-Emitting Diodes." Journal of the Electrochemical Society 158(10): P118-P121.
    Barnes, P., C. H. Fentiman and J. W. Jeffery (1980). "STRUCTURALLY RELATED DICALCIUM SILICATE PHASES." Acta Crystallographica Section A 36(MAY): 353-356.
    Bubnova, R., B. Albert, M. Georgievskaya, M. Krzhizhanovskaya, K. Hofmann and S. Filatov (2006). "X-ray powder diffraction studies and thermal behaviour of NaK2B9O15, Na(Na.17K.83)(2)B9O15, and (Na.80K.20)K2B9O15." Journal of Solid State Chemistry 179(9): 2954-2963.
    Catti, M., G. Gazzoni and G. Ivaldi (1983). "STRUCTURES OF TWINNED BETA-SR2SIO4 AND OF ALPHA'-SR1.9BA0.1SIO4." Acta Crystallographica Section C-Crystal Structure Communications 39(JAN): 29-34.
    Catti, M., G. Gazzoni and G. Ivaldi (1984). "ORDER-DISORDER IN THE ALPHA'-(CA,SR)2SIO4 SOLID-SOLUTION - A STRUCTURAL AND STATISTICAL-THERMODYNAMIC ANALYSIS." Acta Crystallographica Section B-Structural Science 40(DEC): 537-544.
    Catti, M., G. Gazzoni, G. Ivaldi and G. Zanini (1983). "THE BETA-REVERSIBLE-ALPHA'-PHASE TRANSITION OF SR2SIO4 .1. ORDER-DISORDER IN THE STRUCTURE OF THE ALPHA'-FORM AT 383-K." Acta Crystallographica Section B-Structural Science 39(DEC): 674-679.
    Chopelas, A. (1991). "SINGLE-CRYSTAL RAMAN-SPECTRA OF FORSTERITE, FAYALITE, AND MONTICELLITE." American Mineralogist 76(7-8): 1101-1109.
    Cornelis Klein & Cornelius S. Hurlbut, J. (2000). "Manual of mineralogy."
    Dorenbos, P. (2003). "Energy of the first 4f(7)-> 4f(6)5d transition of Eu2+ in inorganic compounds." Journal of Luminescence 104(4): 239-260.
    Dusek, M., V. Petricek, M. Wunschel, R. E. Dinnebier and S. van Smaalen (2001). "Refinement of modulated structures against X-ray powder diffraction data with JANA2000." Journal of Applied Crystallography 34: 398-404.
    Fields, J. M., P. S. Dear and J. J. Brown (1972). "PHASE EQUILIBRIA IN SYSTEM BAO-SRO-SIO2." Journal of the American Ceramic Society 55(12): 585-588.
    Fortnum, D. and J. O. Edwards (1956). "THE RAMAN SPECTRUM AND THE STRUCTURE OF THE AQUEOUS SILICATE ION." Journal of Inorganic & Nuclear Chemistry 2(4): 264-265.
    Fujimori, H., H. Komatsu, K. Ioku, S. Goto and M. Yoshimura (2002). "Anharmonic lattice mode of Ca2SiO4: Ultraviolet laser Raman spectroscopy at high temperatures." Physical Review B 66(6).
    Fukuda, K., I. Maki, S. Ito and S. Ikeda (1996). "Structure change in strontium oxide-doped dicalcium silicates." Journal of the American Ceramic Society 79(10): 2577-2581.
    Georgievskaya, M., B. Albert, R. Bubnova, G. Cordier, C. Baehtz and S. Filatov (2008). "Thermal "order-disorder" behaviour in (Na1-xKx)(4)B8O14 solid solutions investigated by X-ray powder diffraction." Crystal Research and Technology 43(11): 1150-1160.
    Georgievskaya, M., B. Albert, R. Bubnova, G. Cordier, C. Bahtz and S. Filatov (2008). "Thermal "order-disorder" behaviour in (Na1-xKx)(4)B8O14 solid solutions investigated by X-ray powder diffraction." Crystal Research and Technology 43(11): 1150-1160.
    Grosse, H. and E. Tillmanns (1974). "Bariumorthosilicate, Ba2SiO4." Crystal structure communications 3: 599-602.
    Handke, M. and M. Urban (1982). "IR AND RAMAN-SPECTRA OF ALKALINE-EARTH METALS ORTHOSILICATES." Journal of Molecular Structure 79(1-4): 353-356.
    Hazen, R. and A. Au (1986). "High-pressure crystal chemistry of phenakite (Be2SiO4) and bertrandite (Be4Si2O7(OH)2)." Physics and Chemistry of Minerals 13(2): 69-78.
    Hazen, R. and L. Finger (1987). "High-temperature crystal chemistry of phenakite (Be2SiO4) and chrysoberyl (BeAl2O4)." Physics and Chemistry of Minerals 14(5): 426-434.
    Hsu, W.-H., M.-H. Sheng and M.-S. Tsai (2009). "Preparation of Eu-activated strontium orthosilicate (Sr1.95SiO4:Eu-0.05) phosphor by a sol-gel method and its luminescent properties." Journal of Alloys and Compounds 467(1-2): 491-495.
    Ju, L.-C., C. Cai, Q.-Q. Zhu, J.-Y. Tang, L.-Y. Hao and X. Xu (2013). "Color tunable Sr2SiO4:Eu2+ phosphors through the modification of crystal structure." Journal of Materials Science-Materials in Electronics 24(11): 4516-4521.
    Kang, H. S., S. K. Hong, Y. C. Kang, K. Y. Jung, Y. G. Shul and S. Bin Park (2005). "The enhancement of photoluminescence characteristics of Eu-doped barium strontium silicate phosphor particles by co-doping materials." Journal of Alloys and Compounds 402(1-2): 246-250.
    Katkanant, V., J. R. Hardy and F. G. Ullman (1988). "NEW MEASUREMENTS OF THE RAMAN-SPECTRUM OF POTASSIUM SELENATE." Ferroelectrics 82: 185-197.
    Kim, J. S., P. E. Jeon, J. C. Choi and H. L. Park (2005). "Emission color variation of M2SiO4 : Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode." Solid State Communications 133(3): 187-190.
    Kim, J. S., Y. H. Park, J. C. Choi and H. L. Park (2005). "Optical and structural properties of Eu2+-doped (Sr1-xBax)(2)SiO4 phosphors." Journal of the Electrochemical Society 152(9): H135-H137.
    Lam, P. K., R. Yu, M. W. Lee and S. K. Sharma (1990). "STRUCTURAL DISTORTIONS AND VIBRATIONAL-MODES IN MG2SIO4." American Mineralogist 75(1-2): 109-119.
    Larsen, A. C. and R. V. Dreele (1994). "GSAS-General Structure Analysis System." Los Alamos National Laboratory Report LAUR: 86-748.
    Lebail, A., H. Duroy and J. L. Fourquet (1988). "ABINITIO STRUCTURE DETERMINATION OF LISBWO6 BY X-RAY-POWDER DIFFRACTION." Materials Research Bulletin 23(3): 447-452.
    Lee, J. S. and Y. J. Kim (2013). "Effects of barium on luminescent properties of Sr2-xBaxSiO4:Eu2+ nanoparticles." Ceramics International 39: S555-S558.
    McCusker, L. B., R. B. Von Dreele, D. E. Cox, D. Louer and P. Scardi (1999). "Rietveld refinement guidelines." Journal of Applied Crystallography 32: 36-50.
    McKeown, D. A., M. I. Bell and R. Caracas (2010). "Theoretical determination of the Raman spectra of single-crystal forsterite (Mg2SiO4)." American Mineralogist 95(7): 980-986.
    MullerSommer, M., R. Hock and A. Kirfel (1997). "Rietveld refinement study of the cation distribution in (Co, Mg)-olivine solid solution." Physics and Chemistry of Minerals 24(1): 17-23.
    Mumme, W. G., R. J. Hill, G. Bushnellwye and E. R. Segnit (1995). "RIETVELD CRYSTAL-STRUCTURE REFINEMENTS, CRYSTAL-CHEMISTRY AND CALCULATED POWDER DIFFRACTION DATA FOR THE POLYMORPHS OF DICALCIUM SILICATE AND RELATED PHASES." Neues Jahrbuch Fur Mineralogie-Abhandlungen 169(1): 35-68.
    Nguyen, H.-D., I.-H. Yeo and S.-i. Mho (2010). "Identification of Two Luminescence Sites of Sr2SiO4: Eu2+ and (Sr, Ba) 2SiO4: Eu2+ Phosphors." 28: 167-173.
    Noel, Y., M. Catti, P. D'Arco and R. Dovesi (2006). "The vibrational frequencies of forsterite Mg2SiO4: an all-electron ab initio study with the CRYSTAL code." Physics and Chemistry of Minerals 33(6): 383-393.
    Pan, Z., H. He, R. Fu, S. Agathopoulos and X. Song (2009). "Influence of Ba2+-doping on structural and luminescence properties of Sr2SiO4:Eu2+ phosphors." Journal of Luminescence 129(9): 1105-1108.
    Pieper, G., W. Eysel and T. Hahn (1972). "SOLID SOLUBILITY AND POLYMORPHISM IN SYSTEM SR2SIO4-SR2GEO4-BA2GEO4-BA2SIO4." Journal of the American Ceramic Society 55(12): 619-622.
    Rietveld, H. M. (1969). "A PROFILE REFINEMENT METHOD FOR NUCLEAR AND MAGNETIC STRUCTURES." Journal of Applied Crystallography 2: 65-71
    Ringwood, A. E. (1968). "Phase transformations in the mantle." Earth and Planetary Science Letters 5(0): 401-412.
    Shannon, R. D. (1976). "REVISED EFFECTIVE IONIC-RADII AND SYSTEMATIC STUDIES OF INTERATOMIC DISTANCES IN HALIDES AND CHALCOGENIDES." Acta Crystallographica Section A 32(SEP1): 751-767.
    Smaalen, S. v. (2007). "Incommensurate crystallography." Oxford ; New York : Oxford University Press.
    Solé, J., L. Bausa and D. Jaque (2005). An introduction to the optical spectroscopy of inorganic solids, Wiley.
    Stenberg, L. and B. G. Hyde (1986). "A PRELIMINARY ELECTRON-MICROSCOPE STUDY OF THE BETA-REVERSIBLE-ALPHA' TRANSFORMATION OF DISTRONTIUM SILICATE, SR2SIO4." Acta Crystallographica Section B-Structural Science 42: 417-422.
    Stenberg, L., J. R. Sellar and B. G. Hyde (1986). "INCOMMENSURATELY MODULATED ALPHA'-SR2SIO4." Nature 320(6061): 428-429.
    Thompson, J. G., R. L. Withers and B. G. Hyde (1987). "FURTHER CONSIDERATION OF PHASES IN THE SYSTEM BA2SIO4-CA2SIO4." Journal of the American Ceramic Society 70(12): C383-C386.
    Toby, B. H. (2006). "R factors in Rietveld analysis: How good is good enough?" Powder Diffraction 21(1): 67-70.
    Withers, R. L. (1989). "The characterization of modulated structures via their diffraction patterns." Progress in Crystal Growth and Characterization 18(0): 139-204.
    Withers, R. L., B. G. Hyde and J. G. Thompson (1987). "AN ELECTRON-DIFFRACTION STUDY OF THE INCOMMENSURATELY MODULATED ALPHA'-L-PHASE OF DISTRONTIUM SILICATE, SR2SIO4." Journal of Physics C-Solid State Physics 20(11): 1653-1669.
    Young, R. A. (1995). "The Rietveld Method." IUCr Monographs on Crystallography 5. Oxford University Press.
    Zhang, X. G., X. P. Tang, J. L. Zhang and M. L. Gong (2010). "An efficient and stable green phosphor SrBaSiO4:Eu2+ for light-emitting diodes." Journal of Luminescence 130(12): 2288-2292.

    中文部分:

    胡瀚陽 (2013). "探討Sr2SiO4同分異構物形成與晶粒尺寸關係及其高溫行為." 國立成功大學地球科學研究所碩士論文.

    下載圖示 校內:2017-02-24公開
    校外:2017-02-24公開
    QR CODE