| 研究生: |
李益誠 Li, Yi-cheng |
|---|---|
| 論文名稱: |
利用無孔式近場掃描式光學顯微術於電漿子結構之研究 To Study Plasmonic Structures by Using Apertureless Near-field Scanning Optical Microscopy |
| 指導教授: |
陳顯禎
Chen, Shean-jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 無孔式近場掃描式光學顯微術 、外差式干涉 、表面電漿共振 |
| 外文關鍵詞: | surface plasmon resonance, heterodyne interference, apertureless near-field scanning optical microsc |
| 相關次數: | 點閱:103 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般遠場光學顯微技術受限於光學繞射極限(diffraction limit),於軸向與側向空間解析度均無法達到奈米等級。雖然孔徑式近場掃描式光學顯微鏡(near-field scanning optical microscope,NSOM) 可突破光學繞射極限,但解析度仍侷限在50nm左右,因此本論文以商用之原子力顯微鏡(atomic force microscope,AFM)為基礎,發展一無孔式近場掃描式光學顯微鏡(apertureless near-field scanning optical microscopy,aNSOM),企圖將空間解析度提升到10nm以下。
為了多元化的應用,此系統可支援下打下收、側打側收和下打側收三種模式。並利用自行發展之控制器與電路設計來對探針震盪的高階倍頻項(high harmonics terms)進行解調、以量測各種樣品的近場影像,接著搭配文獻的理論做一分析與討論。此外,又加入外差干涉式光學訊號擷取機制,以期能進一步提升近場訊號的訊噪比(signal-to-noise ratio,SNR),而得到一清晰的奈米級影像。最後,利用此aNSOM對奈米狹縫所產生的表面電漿子作量測。搭配有限時域差分法(finite difference time domain,FDTD)的理論模擬,證實了實驗上利用調控入射光的偏振模態,將可改變近場之場強分佈的結果。
Due to the restriction of the diffraction limit in conventional optical microscopes, the axial and lateral spatial resolutions are hard to be achieved to a nanometer scale. Although an aperture near-field scanning optical microscope (NSOM) has been developed for breaking the diffraction limit, the spatial resolution is still limited in the range of 50nm. In this thesis, an apertureless near-field scanning optical microscope (aNSOM) based on a commercial atomic force microscope (AFM) has been developed to attempt to achieve spatial resolution better than 10 nm.
In order to provide various applications, the incident and emitted light can be supplied and collected, respectively, both from the bottom or the side of the sample. The optical signal with high harmonic terms scatted by the vibrated tip is demodulated by using a home-made controller and circuit boards. In addition, the heterodyne interferometric detection technique has been introduced to improve the signal-to-noise ratio (SNR) for acquiring clear nanometer-scale images.
Finally, the surface plasmons from nanoslits has been studied by utilizing the aNSOM. Furthermore, the experimental results of the polarization-dependence of near-field signal have been proved and are consistent with the simulation by finite difference time domain (FDTD) method.
[1] V. L. Mironov, Fundamentals of Scanning Probe Microscopy, NT-MDT, Nizhniy Novgorod (2004).
[2] R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
[3] S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, and G. Lerondel, “Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am. B. 20, 2117-2124 (2003).
[4] A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77, 043703 (2006).
[5] A. Bek, Apertureless SNOM : A New Tool for Nano-Optics, PhD. thesis, Bilkent University (2004).
[6] L. Gomez, R. Bachelot, and P. Royer, “Apertureless scanning near-field optical microscopy a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B. 23, 823-833 (2006).
[7] T. J. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76, 378-380 (2000).
[8] B. D. Mangum, C. Mu, and J. M. Gerton, “Resolving single fluorophores within dense ensembles: contrast limits of tip-enhanced fluorescence microscopy,” Opt. Exp. 16, 6183-6193 (2008).
[9] M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
[10] C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. V. Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140-142 (2000).
[11] L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, and U. Welp, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467-469 (2004).
[12] L. Aigouy, P. Lalanne and J. P. Hugonin, G. Julie, V. Mathet, and M. Mortier, “Near-field analysis of surface wave launched at nanoslit apertures,” Phys. Rev. Lett. 98, 153902 (2007).
[13] D. Courjon, Near-Field Microscopy and Near-Field Optics, Imperial College, London (2003).
[14] Synge, E. H., “A suggested method for extending the resolution into the ultra-microscopic region,” Phil. Mag. 6, 356-362 (1928).
[15] G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Physica Acta 55, 726-735 (1982).
[16] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56, 930 (1986).
[17] J. W. Goodman, Introduction to Fourier Optics, Roberts & Company, Englewood (2005).
[18] 黃貞翰,探針強化近場掃描式光學顯微鏡之研製,國立成功大學工程科學研究所,九十五學年碩士論文。
[19] G. M. Kim, B. J. Kim, E. Have, F. Segerink, N. F. Hulst, and J. Brugger, “Photoplastic near-field optical probe with sub-100-nm aperture made by replication from a nanomold,” J. of Microscopy 209, 267-271 (2003).
[20] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, andA. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229-232 (2003).
[21]D. W. Kim, M. J. Park, C. H. Han, and S. S. Choi, “Fabrication of a high-throughput near-field optical probe using a double metal layer,” Nanotechnology 16, 304-307 (2005).
[22] N. Maghelli, M. Labardi, S. Patane, F. Irrera, and M. Allegrini, “Optical near-field harmonic demodulation in apertureless microscopy,” J. of Microscopy, 202, 84-93 (2001).
[23] J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. of Appl. Phys. 89, 5159-5169 (2001).
[24] http://www.hamamatsu.com/
[25] R. E. Best, Phase-Locked Loops, McGraw-Hill, London (2003).
[26] 林正祥,光電訊號處理系統於生醫檢測之開發與應用,國立中央大學機械工程研究所,九十四學年碩士論文。
[27] Model SR844 RF Lock-in Amplifier, User’s Manual, Stanford Research Systems .
[28] A. Yariv and P. Yeh, Photonics, Oxford, New York (2007).
[29] S. Blaize, S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J. E. Broquin, and V. Minier, “Apertureless near-field scanning optical microscopy for ion exchange channel waveguide characterization,” J. of Microscopy 209, 155-161 (2002).
[30] P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Far-field background suppression in tip-modulated apertureless near-field optical microscopy,” J. of Appl. Phys. 99, 124309 (2006).
[31] P. G. Gucciardi, G. Bachelier, and M. Allegrini, “Artifacts identification in apertureless near-field optical microscopy,” J. of Appl. Phys. 101, 064303 (2007).
[32] P. G. Gucciardi, and M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79, 1543-1545 (2001).
[33] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, New York (1988).
[34] 徐榮忠,具奈米結構之電漿子生物感測器,國立成功大學工程科學研究所,九十七學年碩士論文。
[35] http://www.labtech.co.uk/downloads/nomadics_principles.pdf
[36] 吳民耀、劉威志,“表面電漿子理論與模擬”,物理雙月刊 28, 486-496 (2006).
[37] P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, and R. E. Burge, “Analysis of surface plasmon interference pattern formed by optical vortex beams,” Opt. Exp. 16, 18451-18456 (2008).
[38] P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritions generated by optical vortex beams,” Appl. Phys. Lett. 92, 111108 (2008).
[39] A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A.Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535-2537 (2007).