| 研究生: |
林政源 Lin, Cheng-Yuan |
|---|---|
| 論文名稱: |
小波有限元素法在結構振動分析之應用 Application of Wavelet-Finite Element Method on the Vibration of Structures |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 小波 、有限元素法 、振動 |
| 外文關鍵詞: | wavelet, finite element, vibration |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要研究如何將小波理論導入有限元素法,並且應用在結構振動的分析。在傳統的有限元素法中,使用多項式當作內插函數來近似結構的位移,單位元素的自由度會被多項式的階數所限制,因而對於要解結構局部高變化梯度的問題,就必需提高多項式階數或增加分析的單位元素數目,這都將使計算上更為複雜。
在小波有限元素法架構中,將小波尺度函數作為內插函數,小波係數作為單位元素自由度。因為單位元素建構在小波空間,需要建構一空間轉換矩陣將單位元素的自由度轉為節點位移場,才能處理單位元素之間的連接和邊界條件的代入。
文中選擇的 Daubechies小波函數具有正交化、緊密支撐及優秀的頻域及時域局部定位解析特性,導入有限元素法後應用在桿結構振動分析,驗證小波有限元素法的可行性和優於傳統有限元素法的收斂性。再將小波有限元素法推展到樑結構的動態特性分析,驗證小波有限元素法在不同結構的適用性。
The objective of this dissertation is to study the construction of the wavelet-finite element method. In traditional finite element methods, polynomials are used as interpolation functions to construct an element; the degrees of freedom are restricted by the order of polynomial. When the problem with local high gradient is analyzed by using traditional finite element methods, the higher order polynomial or denser mesh must be employed to ensure the accuracy.
In the wavelet-finite element method, wavelet functions are employed as interpolation functions and wavelet coefficients are employed as the degrees of freedom. We must construct the space transform matrix to transform wavelet coefficients to nodal displacements and rotations, because elements are constructed in wavelet space. By using the transform matrix, neighboring elements can be connected and processing boundary conditions can be processed directly.
Daubechies scaling functions possess elegant properties of orthonormal, compact support and time-frequency localization. The wavelet-element is introduced into the finite element procedure and the dynamic problems of a bar structure. The accuracy and the convergence rate are verified. Then same dynamic problems of a beam structure are solved by the present wavelet-element modal.
1. J. Morlet, G. Arens, I. Fourgeau, and D. Giard, 1982, ‘‘Wave Propagation and Sampling Theory,’’ Geophysics, Vol. 47, pp. 203-236.
2. J. Morlet, 1983, ‘‘Sampling Theory and Wave propagation,’’ NATO ASI Series, Issues in Acoustic Signal / Image Processing and Recognition, Vol. I, pp. 233-261.
3. A. Grossmann, and J. Morlet, 1984, ‘‘Decomposition of Hardly Functions into Square Integrable wavelets of constant shape,’’ SIAM J. Math. Anal. , Vol. 15, pp. 723-736.
4. I. Daubechies, 1988, ‘‘Orthogonal Based of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , Vol. 41, pp. 909-996.
5. Y. Meyer, 1985, ‘‘Principe D’ incertitude Bases Hilbertienes et Algebres Doperateurs ”, Seminaire Bourbaki, No. 662
6. C. De Boor, R. A. DeVore and A. Ron, 1993, ‘‘On the Construction of Multivariate (pre) wavelets,’’ Constr. Approx., Vol. 9, pp. 123-166.
7. S. D. Riemenschneider and Z. Shen, 1992, ‘‘Wavelets and Pre-Wavelets in Low Dimensions,’’ J. Approx. Theory, Vol. 71, pp. 18-38.
8. Ph. Tchamitchian, 1987, ‘‘Biothogonalite et Theory des Operateurs,’’ Rev. Math. Iberoamer, Vol. 3, pp. 123-152.
9. A. Cohen, ‘‘Bi-orthogonal Wavelets,’’ in Wavelets: A Tutorial in Theory and Applications, pp. 123-152.
10. A. Karoui and Vaillancourt, 1994, ‘‘Families of Bi-orthogonal Wavelets,’’ Computer Math Appl , Vol. 28, pp. 25-39.
11. A. Cohen, I. Daubechies and J. Feauveau, 1992, ‘‘Bi-orthogonal Bases of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , Vol. 45, pp. 485-560.
12. Y. Meyer, 1986, ‘‘Ondettes et Functions Splines,’’ Lectures given at the University of Torino, Italy.
13. Y. Meyer, 1986, ‘‘Ondettes , Functions Splines et Analyses Graduees,’’ Seminaire EDP , Ecole Polytechnique , Paris , France.
14. S. G. Mallat, 1988, ‘‘A Theory for Multiresolution Signal Decomposition: The Wave Representation,’’ Comm. Pure Appl. Math. , Vol. 41, pp. 674-693.
15. I. Daubechies, 1992, ‘‘Ten Lectures on Wavelets,’’ SIAM. , Philadelphia
16. C. K. Chui and J. Z. Wang, 1991, ‘‘A Cardinal Spline Approach to Wavelets,’’ Proc. Amer. Math. Soc., Vol. 113, pp. 785-793.
17. S. Jaffard, 1992, ‘‘Wavelet Methods for Fast Resolution of Elliptic Problems,’’ SIAM J. Numer. Anal. , Vol.29 No.4, pp. 965-986.
18. C. Zhiqian and E. Weinan, 1992, ‘‘Hierarchical Method for Elliptic Problems Using Wavelets,’’ Comm. In Appl. Numer. Methods, Vol. 8, pp. 819-825.
19. E. Bacry, S. Mallat and G. Papanicolaou, 1992, ‘‘A Wavelets Based Space-time Numerical Method for Partial Differential Equations,’’ Mathematical Modeling and Numerical Analysis, Vol. 26, pp. 793-834.
20. J. C. Xu and W. C. Shann, 1992, ‘‘Wavelet-Galerkin Methods for Two-Point Boundary Value Problems,’’ Numer. Math., Vol. 63, pp. 123-144.
21. S. Qian and J. Weiss, 1993, ‘‘Wavelets and the Numerical Solution of Boundary Value Problems,’’ Appl. Math. Lett. , Vol. 6, pp. 47-52.
22. M. Q. Chen, C. Hwang and Y. P. Shih, 1994, ‘‘A Wavelet-Galerkin Method for Solving population balance equations,’’ Computers & Chem. Engineering.
23. M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘A Wavelet-Galerkin Method for Solving Stefan Problems,’’ J. Chinese Inst. Chem. Engrs, Vol. 26, No. 2, pp. 103-117.
24. M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘Identification of A Linear Time-Varying System by A Wavelet-Galerkin Method,’’ Proc. of NSC, ROC-Part A: Physical Science and Engineering.
25. H. L. Resnikoff, 1989, ‘‘Compactly Supported Wavelets and The Solution of Partial Differential Equations,’’ Tech. Report AD890926, Aware, Inc., Cambridge, USA., Vol. 26, pp. 1-9.
26. S. Jaffard and Ph. Laurecot, 1992,‘‘Orthonormal Wavelets, Analysis of Operators, and Applications to Numerical Analysis,’’ In C. K. Chui (ed), Wavelets-A Tutorial in Theory and Applications, pp. 543-601.
27. C. Zhiqian and E. Weinan, 1992,‘‘Hierarchical Method for Elliptic Problems Using Wavelet,’’ Communication in Applied Numerical Methods, Vol. 8, pp. 819-825.
28. W. Dahmen and C. A. Micchelli, 1993,‘‘Using the Refinement Equation for Evaluating Integrals of Wavelets,’’ SIAM J. Math. Anal. , Vol. 30, No. 2, pp. 507-537.
29. G. Beylkin, 1992,‘‘On the Representation of Operators in Bases of Compactly Supported Wavelets,’’ SIAM J. Math. Anal. , Vol. 29, No. 6, pp. 1716-1740.
30. A. Lotto, H. L. Resnikoff and E. Tenenbaum, June 1991,‘‘The Evaluation of Connection Coefficients of Compactly Supported Wavelets,’’ in Y. Maday(ed), Proc. of the French-USA Workshop on Wavelets and Turbulence, Princeton University, New York, Springer-Verlag.
31. K. Amaratunga, J. R. Williams, S. Qian and J. Weiss, 1994,‘‘Wavelet-Galerkin Solutions for One-Dimensional Partial Differnetial Equations,’’ Int. J. for Num. Methods in Engineering, Vol. 37, pp. 2703-2716.
32. J. Ko, A. J. Kurdial and M. S. Pilant, 1995,‘‘A Class of Finite Element Methods Based Orthonormal, Compactly Supported Wavelets,’’ Computational Mechanics, Vol. 16, pp. 235-244.
33. F. Jin and T.Q. Ye, 1999,‘‘Instability Analysis of Prismatic Members by Wavelet Galerkin Method,’’ Advances in Engineering Software, Vol. 30, pp. 361-367.
34. O. C. Zienkiewicz and J. P. De, S. R. Gago and D. W. Kelly, 1983,‘‘The Hierarchical Concept in Finite Element Analysis,’’ Computer and Structures, Vol. 16, pp. 53-65.
35. O. C. Zienkiewicz and J. Z. Zhu, 1992,‘‘The Super-convergent Patch Recovery and A Posteriori Error Estimates. Part 1: The Recovery Technique,’’ Int. J. for Numerical Methods in Engineering, Vol. 33, pp. 1331-1364.
36. G. Strange, 1989,‘‘ Wavelets and Dilation Equation: A Brief Introduction,’’ SIAM Review 31 , pp. 614-627.
37. S. Rao, 1995, Mechanics vibrations, 3rd ed., Addison-Wesley, USA