簡易檢索 / 詳目顯示

研究生: 陳彥蓉
Chen, Yen-Jung
論文名稱: 嵌入彈性介質中的單壁奈米碳管之三維自由振動和挫屈分析
Three-dimensional Free Vibration and Buckling Analyses of Single-walled Carbon Nanotubes Embedded in an Elastic Medium
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 82
中文關鍵詞: 漸近理論奈米碳管Eringen非局部本構方程組Pasternak模型Winkler模型多重時間尺度法振動挫屈
外文關鍵詞: asymptotic theory, carbon nanotubes, Eringen’s nonlocal constitutive relations, Pasternak’s model, Winkler’s model, the multiple time scale method, vibration, buckling,
相關次數: 點閱:103下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文在三維非局部彈性力學理論體系下,針對具雙邊簡支承之嵌入式單壁奈米碳管(Single-walled carbon nanotubes, SWCNTs),應用多重時間尺度法(The method of multiple time scales)研究其自由振動行為和受圍壓及軸壓作用下之挫屈行為,文中以Eringen非局部材料本構關係將微小尺度效應納入考量。單壁奈米碳管與周圍環境介質的交互作用以Pasternak或Winkler基礎模型模擬,將半管厚與中曲面半徑比之均方根作為微擾參數,透過無因次化、漸近展開及連續積分等數學運算過程得到各階問題的控制方程組。結果顯示,三維非局部彈性力學理論的首階控制方程式即為非局部古典殼理論(Classical shell theory, CST)之控制方程式,且高階問題與首階問題具有相同之微分運算子,惟控制方程式之非齊性項不同。文中應用本三維非局部彈性力學漸近理論,求解單壁奈米碳管之自然頻率及臨界挫屈載重參數,並據以檢核各類一維非局部梁及二維非局部殼理論的準確度。

    Within the framework of three-dimensional (3D) nonlocal elasticity theory, the authors develop an asymptotic theory to investigate the free vibration characteristics and buckling behavior under combined hydrostatic pressure and axial compression of simply supported, single-walled carbon nanotubes (SWCNTs) non-embedded or embedded in an elastic medium using the multiple time scale method. Eringen’s nonlocal constitutive relations are adopted to account for the small length scale effect in the formulation. The interactions between the SWCNT and its surrounding medium are modelled as a two-parameter Pasternak foundation model or Winlder foundation model. After performing a series of mathematical processes, including nondimensionalization, asymptotic expansion, and successive integration, etc., the authors obtain recurrent sets of motion equations for various order problems. The nonlocal classical shell theory (CST) is derived as a first-order approximation of the current 3D nonlocal elasticity problem, and the equations of motion for higher-order problems retain the same differential operators as those of the nonlocal CST, although with different nonhomogeneous terms. The current asymptotic solutions for the natural frequency and critical load parameters of non-embedded or embedded SWCNTs are obtained to assess the accuracy of various nonlocal shell and beam theories available in the literature.

    摘要 I Extended Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 第二章 嵌入式單壁奈米碳管之三維自由振動分析 6 2.1 單壁奈米碳管的原子結構 6 2.2 Eringen非局部彈性材料應力-應變關係 6 2.3 三維非局部彈性力學理論 9 2.3.1 本構方程組 9 2.3.2 無因次化變數與座標 12 2.3.3 漸近展開 15 2.3.4 零階問題 17 2.3.5 高階(k=1, 2, 3,... )問題 20 2.4 應用 22 2.4.1 零階解 22 2.4.2 逐階遞迴修正程序 24 2.5 數值範例 26 2.5.1 撓曲振動模態 26 2.5.2 縱向振動模態 27 2.5.3 徑向類呼吸振動模態 31 2.5.4 廣義振動模態 32 第三章 嵌入式單壁奈米碳管受圍壓和軸壓作用下之三維挫屈分析 40 3.1 三維非局部彈性力學理論 40 3.1.1 本構方程組 40 3.1.2 無因次化 42 3.1.3 漸近展開 43 3.1.4 各階問題 45 3.1.4.1 零階問題 45 3.1.4.2 高階(k=1, 2, 3,... )問題 48 3.2 應用 50 3.2.1 零階解 50 3.2.2 逐階遞迴修正程序 51 3.3 數值範例 53 3.3.1 軸向壓力 54 3.3.2 圍束壓力 59 3.3.3 軸壓與圍壓聯合作用 62 第四章 結論 64 參考文獻 66 附錄A 第二章函數自然振動範例中的詳細表達式 73 附錄B 雙邊簡支承之單壁奈米碳管於徑向類呼吸模式的自然頻率正解 74 附錄C 第三章函數挫屈範例中的詳細表達式 76 附錄D 各種古典殼理論之奈米碳管挫屈載重參數解析解 77

    Ansari, R., Rouhi, H. (2012), Analytical treatment of the free vibrations of single-walled carbon nanotubes based on the nonlocal Flu ̈gge shell theory. J Eng Mater Technol 134, 011008.
    Ansari, R., Rouhi, H. (2015), Nonlocal Flu ̈gge shell model for the axial buckling of single-walled carbon nanotubes: An analytical approach. Int J Nano Dimens 6, 453-462.
    Ansari, R., Sahmani, S. (2012), Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun Nonlinear Sci Numer Simulat 17, 1965-79.
    Ansari, R., Sahmani, S., Rouhi, H. (2011a), Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys Lett A 375, 1255-1263.
    Ansari, R., Sahmani, S., Rouhi, H. (2011b), Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh-Ritz technique. Comput Mater Sci 50, 3050-3055.
    Arash, B., Wang, Q. (2012), A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51, 303-13.
    Aydogdu, M. (2009), A general nonlocal beam theory: Its application to nanobeam bending,buckling and vibration. Physica E 41, 1651-1655.
    Bert, C.W., Malik, M. (1997), Differential quadrature: a powerful new technique for analysis of composite structures. Compos Struct 39, 179-89.
    Brischetto, S., Tornabene, F., Fantuzzi, N., Bacciocchi, M. (2015), Refined 2D and exact 3Dshell models for the free vibration analysis of single- and double-walled carbon nanotubes. Technol 3, 259-84.
    Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K. (2006), Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624-52.
    De Las Casas, C., Li, W. (2012), A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208, 74-85.
    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J. (2013), Carbon nanotubes: present and future commercial applications. Sci 339, 535-39.
    Dindarloo, M.H., Li, L. (2019), Vibration analysis of carbon nanotubes reinforced isotropic doubly-curved nanoshells using nonlocal elasticity theory based on a new higher order shear deformation theory. Compos Part B 175, 107170.
    Donnell, L.H. (1976), Beams, Plates, and Shells. McGraw-Hill, Inc., New York.
    Du, H., Lim, M.K., Lin, R.M. (1994), Application of generalized differential quadrature method to structural problems. Int J Numer Methods Eng 37, 1881-96.
    Ebrahimi, F., Nasirzadeh, P. (2015), A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method. J Theoret Appl Mech 53, 1041-52.
    Ebrahimi, F., Salari, E., Hosseini, S.A.H. (2015), Thermomechanical vibration behavior of
    FG nanobeams subjected to linear and nonlinear temperature distributions. J Therm Stresses 38, 1360-86.
    Eltaher, M.A., Khater, M.E., Emam, S.A. (2016), A review on nonlocal elastic models for bending, buckling, vibration, and wave propagation of nanoscale beams. Appl Math Modell 40, 4109-28.
    Eringen, A.C. (1983), On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54, 4703-10.
    Eringen, A.C. (2002), Nonlocal Continuum Field Theories. Springer-Verlag, New York.
    Eringen, A.C., Edelen, D.G.B. (1972), On nonlocal elasticity. Int J Eng Sci 10, 233-48.
    Esashi, M. (2009), Micro/nano electro mechanical systems for practical applications. J Phys 187,012001.
    Fazelzadeh, S.A., Ghavanloo, E. (2012), Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Compos Struct 94, 1016-22.
    Firouz-Abadi, R.D., Fotouhi, M.M., Permoon, M.R., Haddadpour, H. (2012), Natural frequencies and buckling of pressurized nanotubes using shear deformable nonlocal shell model. J Mech Sci Tech 26, 563-73.
    Flu ̈gge, W. (1973), Stresses in Shells. Springer-Verlag, New York.
    Gohardani, O., M.C. Elola, C. Elizetxea. (2014), Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Progress Aerospace Sci 70, 42-68.
    Gupta S.S., Bosco F.G., Bosco, R.C. (2010), Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration, Comput Mater Sci 47, 1049-1059.
    Iijima, S. (1991), Helical microtubules of graphitic carbon Nature 354, 56-8.
    Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G.,
    Dresselhaus, M.S. (2001), Structural(n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Phys Rev Lett 86, 1118-1121.
    Khdeir, A.A., Reddy, J.N., Frederick, D. (1989), A study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories. Int J Eng Sci 27, 1337-1351.
    Leissa, A.W. (1995), Buckling and postbuckling theory for laminated composite plates, in: Turvey, G.J., Marshall, I.H. (Eds.), Buckling and Postbuckling of Composite Plates. Chapman and Hall, London.
    Luo, C., Xie, L., Wang, Q., Luo, G., Liu, C. (2015), A review of the application and performance of carbon nanotubes in fuel cells. J Nanomater, 560392.
    Mittal, G., Dhand, V., Rhee, K.Y., Park, S.J., Lee, W.R. (2015), A review on carbon nanotubes and graphenes as fillers in reinforced polymer nanocomposites. J Industrial Eng Chem 21, 11-25.
    Murmu, T., Pradhan, S.C. (2009), Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E 41, 1232-1239.
    Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, Inc., New York.
    Ng, K.W., Lam, W.H., Pichiah, S. (2013), A review on potential applications of carbon nanotubes in marine current turbines. Renewable and Sustainable Energy Reviews 28, 331-39.
    Pradhan, S.C., Reddy, G.K. (2011), Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM. Comput Mater Sci 50, 1052-1056.
    Rafiee, R., Moghadam, R.M. (2014), On the modeling of carbon nanotubes: A critical review. Compos Part B 56, 435-49.
    Reddy, J.N. (2007), Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45, 288-307.
    Reddy, J.N., Pang, S.D. (2008), Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103, 023511.
    Rosa, M.A.D., Lippiello, M. (2016), Nonlocal frequency analysis of embedded single-walled carbon nanotube using the differential quadrature method. Compos Part B 84, 41-51.
    Sanders, J.L. (1963), Nonlinear theories for thin shells. Quart J Appl Math 21, 21-36.
    Sheinman, I., Goldfeld, Y. (2001), Buckling of laminated cylindrical shells in terms of different theories and formulations. AIAA J 39, 1773-1781.
    Silvestre, N., Wang, C.M., Zhang, Y.Y., Xiang, Y. (2011), Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos Struct 93, 1683-1691.
    Soldatos, K.P. (1984), A comparison of some shell theories used for the dynamic analysis of cross-ply laminated circular cylindrical panels. J Sound Vib 97, 305-319.
    Strozzi, M., Manevitch, L.I., Pellicano, F., Smirnov, V.V., Shepelev, D.S. (2014), Low-frequency linear vibrations of single-walled carbon nanotubes: Analytical and numerical models. J Sound Vib 333, 2936-57.
    Thai, H.T. (2012), A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52, 56-64.
    Thai, H.T., Vo, T.P. (2012), A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci 54, 58-66.
    Thostenson, E.T., Ren, Z., Chou, T.W. (2001), Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61, 1899-912.
    Wang, Q., Arash, B. (2014), A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput Mater Sci 82, 350-360.
    Wang, B.L., Hoffman, M., Yu, A.B. (2012), Buckling analysis of embedded nanotubes using gradient continuum theory. Mech Mater 45, 52-60.
    Wang, C.Y., Ru, C.Q., Mioduchowski, A. (2004), Applicability and limitations of simplified elastic shell equations for carbon nanotubes. J Appl Mech 71, 622-31.
    Wang, Q., Wang, C. (2007), The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnol 18, 075702.
    Wang, C.M., Tay, Z.Y., Chowdhuary, A.N.R., Duan, W.H., Zhang, Y.Y., Silvestre, N. (2011), Examination of cylindrical shell theories for buckling of carbon nanotubes. Int J Struct Stab Dyn 11, 1035-1058.
    Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S. (2006), Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39, 3904-3909.
    Wang, C.M., Zhang, Y.Y., Xiang, Y., Reddy, J.N. (2010), Recent studies on buckling of carbon nanotubes. Appl Mech Rev 63, 030804.
    Wu, C.P., Lai, W.W. (2015), Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method. Phys E 68, 8-21.
    Wu, C.P., Lin, C.H., Wang, Y.M. (2018), Nonlinear finite element analysis of a multi-walled carbon nanotube resting on a Pasternak foundation. Mech Adv Mater Struct 2019; https//doi.org/10.1080/15376494.1444222.
    Wu, C.P., Lee, C.Y. (2001), Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. Int J Mech Sci 43, 1853-69.
    Wu, C.P., Li, W.C. (2017), Free vibration analysis of embedded single-layered nanoplates and graphene sheets by using the multiple time scale method. Comput Math Appl 73, 838-54.
    Wu, C.P., Li, W.C. (2017) Asymptotic nonlocal elasticity theory for the buckling analysis of embedded single-layered nanoplates/graphene sheets under biaxial compression. Phys E 89, 160-9.
    Wu, C.P., Li, W.C. (2017), Asymptotic nonlocal elasticity theory for the buckling analysis of embedded single-layered nanoplates/graphene sheets under biaxial compression. Physica E 89, 160-169.
    Wu, C.P., Liou, J.Y. (2016), RMVT-based nonlocal Timoshenko beam theory for stability analysis of embedded single-walled carbon nanotube with various boundary conditions. Int J Struct Stab Dyn 16, 1550068.
    Wu, C.P., Yu, J.J. (2019), A review of mechanical analysis of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory. Arch Appl Mech 89, 1761-92.
    Zhang, Y.Y., Wang, C.M., Challamel, N. (2010), Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model. J Eng Mech 136, 562-574.
    Zhang, Y.Y., Wang, C.M., Duan, W.H., Xiang, Y., Zong, Z. (2009), Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnol 20, 395707.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE