| 研究生: |
林睿真 Lin, Jui-Chen |
|---|---|
| 論文名稱: |
微奈米壓印用含酸含矽阻劑材料的合成及應用 Acidic and Silated Resists materials for Micro/Nano imprint Lithography |
| 指導教授: |
許聯崇
Hsu, Lien-chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 壓印 、微奈米 |
| 外文關鍵詞: | micro/nano, imptint |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係開發適用於熱壓印型奈米壓印之阻劑層材料,為因應不同的需求分別作兩大系列阻劑之合成。酸性壓克力阻劑部份經由Methyl methacrylate(MMA)、normal-Butylacrylate(n-BA)、Methacrylic acid(MAA)三種單體經由自由基聚合(free radical
polymerization)而得,另外,矽化酸性壓克力阻劑則是依據酸性壓克力阻劑的單體組成配方再添加不同含量之含矽單體(3-Methacryloyloxypropyl)tris (trimethylsiloxy) silane 聚合所得。
酸性高分子阻劑部份,經由熱重量分析以及微差掃描分析顯示,實驗所得阻劑能夠適用於熱壓型微奈米壓印製程,且玻璃轉換溫度(Tg)低於傳統的熱壓型阻劑PMMA,即能適用在較低壓印溫度。此外,藉由添加酸性單體MAA,使得阻劑能夠溶解於鹼性的TMAH(aq)中,能夠有效的縮減壓印製程中的去阻劑(Stripping)時間,提高產量,同時不需使用昂貴的反應性離子蝕刻儀或是有機溶劑去除阻劑,最後將阻劑應用在壓印製程上,成功製造出PLED軟性顯示器。
矽化酸性高分子阻劑部份,為了提高阻劑抵抗氧電漿蝕刻的能力,在酸性壓克力阻劑中添加了含矽之壓克力單體,合成出一系列矽化酸性阻劑,同樣通過熱安定性測試且經由微差掃描分析結果得到玻璃轉換溫度約在50℃上下。其中蝕刻速率結果,可證明添加含
矽單體對於抗蝕刻能力的提升。最後使用此阻劑,成功的轉印出奈米級的圖案,且線寬之收縮率在掃描式電子顯微鏡觀察可達3%以下,顯示此系列阻劑應用在微奈米壓印上之潛力。
Two different series of resists for hot embossing nanoimprinting were
developed. One is the acidic resists which were prepared by the free r a d i c a l p o l y m e r i z a t i o n o f m e t h y l m e t h a c r y l a t e ( M M A ) ,normal-butylacrylate(n-BA), and methacrylic acid(MAA) in PGMEA.
The other series of the resists containing silane moiety, acylic monomer (3-methacryloyloxypropyl)tris (trimethylsiloxy) silane, to promote the oxygen plasma resistance.
In the part of the acidic resists, the glass transition temperatures and the thermal stabilities were examined by DSC and TGA, and the
results demonstrated that the novel resists would be suitable for the
application of hot-embossing nanoimprint lithography. Moreover, the addition of MAA made it possible for the resists to dissolve in base
solution, TMAH, and it would be helpful to reduce the time in the resist stripping step. Finally, the resist were applied in the imprinting to fabricate PLED( polymer light emitting diode) device on a flexible substrate.
The second series of resists also passed the thermal stability tests, and their Tgs were around 50℃. The results of the etching rate tests proved the improvement of etching resistance by adding the silane monomer. At last, the resist was used in the nanoimprint lithography, and it can completely transfer the nano-scale patterns of the silicon mold to the substrate. From the observation of SEM, the shrinkage of the pattern was less than 3%, so they demonstrated that this series ofresists has potential to be used in nanoimprint lithography.
1 . J o n c k h e e r e , R . , O p t i c a l p r o x i m i t y c o r r e c t i o n : M a s k
pattern-generation challenges, Microelectronic Engineering 1996, 30,115
2. Harriott, L.R., Next generation lithography, Materials Science in
Semiconductor Processing 1998, 1, 93
3. Chou, S.Y., Imprint of sub-25 nm vias and trenches in polymers,
Applied Physics Letters 1995, 67, 3114
4. Chou, S.Y., Krauss, P.R., Imprint Lithography with Sub-10 nm
Feature Size and High Throughput, Microelectronic Engineering 1997,
35, 237
5. Zankovych, S., Hoffmann, T., Seekamp, J., Nanoimprint lithography:
Challenges and prospects, Nanotechnology 2001, 12, 91
6. Sotomayor Torresa, C.M., Zankovych, S., Seekamp, J., Nanoimprint
lithography: An alternative nanofabrication approach, Materials
Science and Engineering C 2003, 23, 23
7. http://public.itrs.net/
8. http://www.technologyreview.com/articles/emerging0203.asp
9. Chou, S.Y., Nanoimprint lithography, Journal of Vacuum Science &
Technology B 1996, 14, 4129
10. Tan, H., Gilbertson, A., Chou, S.Y., Roller nanoimprint lithography,
Journal of Vacuum Science & Technology B 1998, 16, 3926
11. Chou, S.Y., Yu, Z., Schablitsky, S.J., Nanoscale GaAs metal–
semiconductor–metal photodetectors fabricated using nanoimprint
lithography, Applied Physics Letters 1999, 74, 2381
12. Wang, J., Schablitsky, S., Yu, Z., Chou, S.Y., Fabrication of a new
broadband waveguide polarizer with a double-layer 190 nm period
metal-gratings using nanoimprint lithography, Journal of Vacuum
Science and Technology B 1999, 17, 2957
13. http://www.microresist.de/product.htm
14. Pfeiffer, K., Bleidiessel, G., Gruetzner, G., Schulz, H., Hoffmann, T.,
Scheer, H.C., Suitability of new polymer materials with adjustable
glass emperature for nano-imprinting, Microelectronic Engineering
1999, 46, 431
15. Heidari, B., Maximov, I., Montelius, L., Nanoimprint lithography at
the 6 in. wafer scale, Journal of Vacuum Science and Technology B
2000, 18, 3557
16. Haatainen, T., Ahopelto, J., Gruetzner, G., Finck, M., Pfeiffer, K.,
Step and stamp imprint lithography using a commercial flip chip
bonder, Proceedings of SPIE 2000, 3997, 874
17. Heyderman, L. J., Schift, H., David, C., Gobrecht, J., Schweizer, T.,
Flow Behaviour of Thin Polymer Films Used for Hot Embossing
Lithography, Microelectronic Engineering 2000, 54, 229
18. Beck, M., Graczyk, M., Maximov, I., Sarwe, E.L., Improving
stamps for 10 nm level wafer scale nanoimprint lithography,
Microelectronic Engineering 2002, 61-62, 441
19. Hirai, Y., Fujiwara, M., Okuno, T., Tanaka, Y., Endo, M., Irie, S.,
Nakagawa, K., Sasago, M., Study of the resist deformation in nanoimprint lithography, Journal of Vacuum Science and Technology
B 2001, 19, 2811
20. Guo, L.J., Peter, R., Krauss, Chou, S.Y., Nanoscale silicon field
effect transistors fabricated using imprint lithography, Applied
Physics Letters 1997, 71, 1881
21. Michael, D., Chou, S.Y., Fabrication of 70 nm channel length
polymer organic thin-film transistors using nanoimprint lithography
2002, Applied Physics Letters, 81, 4431
22. Chen, Y., Macintyre, D.S., Boyd, E., Moran, D., Thayne, I., Thoms,
S ., Study of electron forward scattering effects on the footwidth of T - g a t e s f a b r i c a t e d u s i n g a b i l a y e r o f P M M A a n d U V , Microelectronic Engineering Microelectronic Engineering 2000, 53, 349
23. Wu, W., Gu, J., Ge, H., Chou, S.Y., Room-temperature Si
single-electron memory fabricated by nanoimprint lithography,
Applied Physics Letters 2003, 83, 2268
24. Chou, S.Y., Fabrication of 70 nm channel length polymer organic
thin-film transistors using nanoimprint lithography, Applied Physics
Letters 2002, 81, 4431
25. Zhang, W., Chou, S.Y., Fabrication of 60-nm transistors on 4-in.
wafer using nanoimprint at all lithography levels, Applied Physics
Letters 2003, 83, 1632
26. Krauss, P.R., Chou, S.Y., ;Nano-compact disks with 400 Gbit/in2
storage density fabricated using nanoimprint lithography and read
with proximal probe, Applied Physics Letters 1997, 71, 3174
27. Moritz, J., Landis, S., Toussaint, J.C., Bayle-Guillemaud, R.,
Patterned media made from pre-etched wafers: A promising route
toward ultrahigh-density magnetic recording, IEEE Transactions on
Magnetics 2002, 38, 1731
28. Li, M.T., Tan, H., Chen, L., Wang, J., Chou, S.Y., Large area direct
nanoimprinting of SiO2-TiO2 gel gratings for optical applications ,
Journal of Vacuum Science and Technology B 2003, 21, 660
29. Gu, Y., Igor, L., Kuskovsky, J., Fung, R.. Robinson, I.P.,
D e t e r m i n a t i o n o f s i z e a n d c o m p o s i t i o n o f o p t i c a l l y a c t i v e
CdZnSe/ZnBeSe quantum dots, Applied Physics Letters 2003, 83, 3779
30. Yu, Z., Wu, W., Chen, L., Chou, S.Y., Fabrication of large area 100
nm pitch grating by spatial frequency doubling and nanoimprint
lithography for subwavelength optical applications, Journal of
Vacuum Science and Technology B 2001, 19, 2816
31. Yu, Z., Gao, H., Wu, W., Ge, H., Chou, S.Y., Fabrication of large
area subwavelength antireflection structures on Si using trilayer resist
nanoimprint lithography and liftoff, Journal of Vacuum Science and
Technology B 2003, 21, 2874
32. Studer, V., Pépin, A., Chen, Y., Nanoembossing of thermoplastic
polymers for microfluidic applications, Applied Physics Letters 2002,
80, 3614
33. Pépin, A.; Youinou, P.; Studer, V., Lebib, A., Chen, Y., Nanoimprint
lithography for the fabrication of DNA electrophoresis chips,
Microelectronic Engineering 2002, 61-62, 927
34. Otto, M., Bender, M., Hadam, B., Spangenberg, B., Kurz, H.,
Fabrication of nanostructures using a UV-based imprint technique,
Microelectronic Engineering 2000, 53, 233
35. Otto, M., Bender, M., Hadam, B., Spangenberg, B., Kurz, H.,
Characterization and application of a UV-based imprint technique,
Microelectronic Engineering 2001, 57-58, 361
36. Colburn, M., Johnson, S., Stewart, M., Damle, S., Bailey, T., Choi,
B.J., Wedlake, M., Michaelson, T., Sreenivasan, S.V., Step and Flash
Imprint Lithography: A New Approach to High-Resolution Patterning,
Proceedings of SPIE 1999, 3676, 379
37. Liang, X., Zhang, W., Li, M., Xia, Q., Wu, W., Ge, H., Huang, X.,
Chou, S.Y., Electrostatic force-assisted nanoimprint lithography
(EFAN), Nano Letters 2005, 5, 527
38. Resnick, D.J., Mancini, D., Dauksher, W.J., Improved step and flash
imprint lithography templates for nanofabrication, Microelectronic
Engineering 2003, 69, 412
39. Chappell, J., Electronic News - Electronic Business 2004
40. Xia, Y., Whitesides, G.M., ; Soft lithography, Chem. Int. 1998, 37,
550
41. Falconnet, D., Csucs, G., Surface engineering approaches to
micropattern surfaces for cell-based assays Biomaterials 2006, 27, 3044
42. Lin, S.C., ; Simultaneous immobilization of protein microarrays by
a micro stamper with back-filling reservoir, Sensors and Actuators B:
2004, 99, 174
4 3 . C h e n g , X . , C h a n g , M . H . , G u o , L . J . , C o m b i n e d
Nanoimprint-and-Photolithography Technique with a Hybrid Mold,
Proceedings of SPIE - The International Society for Optical
Engineering 2004, 5374, 337
4 4 . C h e n g , X . , G u o , L . J . , A
combined-nanoimprint-and-photolithography patterning technique ;
Microelectronic Engineering 2004, 71, 277
45. Cheng, X., Guo, L.J., One-step lithography for various size patterns
with a hybrid mask-mold, Microelectronic Engineering 2004, 71, 288
46. Liao,W.C., Hsu, L.C., High aspect ratio pattern transfer in imprint
lithography using a hybrid mold, Journal of Vacuum Science and
Technology B: Microelectronics and Nanometer Structures 2004, 22,
2764
47. Cheng, X.,Guo, L.J., A hybrid mask-mould lithography scheme and
i t s a p p l i c a t i o n i n n a n o s c a l e o r g a n i c t h i n f i l m t r a n s i s t o r s ,
Nanotechnology 2006, 17, 927
48. Chou, S.Y., Keimel, C., Gu, J., Ultrafast and direct imprint of
nanostructures in silicon, Nature 2002, 417, 835
49. Schulz, H., Scheer, H.-C., Hoffmann, T., New polymer materials for
nanoimprinting, Journal of Vacuum Science & Technology B 2000, 18,
1861
50. http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf
51. http://www.microresist.de/thermoplastics_2005_en.htm
52. Colburm M., Annette,G., Marie, A., Patterning nonflat substrates
with a low pressure, room temperature, imprint lithography
process,Journal of Vacuum Science and Technology B 2001, 19(6),
2162
53. http://www.microresist.de/mr_nil6000_en.htm
54. http://www.toyogosei.net/research.html
55. http://www.microresist.de/mri9000e_2005_en.htm
56. Liao, W.C., Hsu, L.C., Acidic acrylic polymers for nanoimprint
lithography on flexible substrates, Journal of Vacuum Science and
Technology B 2005, 23, 2518
57. 有機光譜學郭振源
58. 高分子設計
59. 林松香, 材料與社會
60. 陳壽安;光訊第79期1999年8月
61. 吳忠幟;電子資訊第4卷第2期1998年8月
校內:2096-07-27公開