簡易檢索 / 詳目顯示

研究生: 林睿真
Lin, Jui-Chen
論文名稱: 微奈米壓印用含酸含矽阻劑材料的合成及應用
Acidic and Silated Resists materials for Micro/Nano imprint Lithography
指導教授: 許聯崇
Hsu, Lien-chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 壓印微奈米
外文關鍵詞: micro/nano, imptint
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係開發適用於熱壓印型奈米壓印之阻劑層材料,為因應不同的需求分別作兩大系列阻劑之合成。酸性壓克力阻劑部份經由Methyl methacrylate(MMA)、normal-Butylacrylate(n-BA)、Methacrylic acid(MAA)三種單體經由自由基聚合(free radical
    polymerization)而得,另外,矽化酸性壓克力阻劑則是依據酸性壓克力阻劑的單體組成配方再添加不同含量之含矽單體(3-Methacryloyloxypropyl)tris (trimethylsiloxy) silane 聚合所得。
    酸性高分子阻劑部份,經由熱重量分析以及微差掃描分析顯示,實驗所得阻劑能夠適用於熱壓型微奈米壓印製程,且玻璃轉換溫度(Tg)低於傳統的熱壓型阻劑PMMA,即能適用在較低壓印溫度。此外,藉由添加酸性單體MAA,使得阻劑能夠溶解於鹼性的TMAH(aq)中,能夠有效的縮減壓印製程中的去阻劑(Stripping)時間,提高產量,同時不需使用昂貴的反應性離子蝕刻儀或是有機溶劑去除阻劑,最後將阻劑應用在壓印製程上,成功製造出PLED軟性顯示器。
    矽化酸性高分子阻劑部份,為了提高阻劑抵抗氧電漿蝕刻的能力,在酸性壓克力阻劑中添加了含矽之壓克力單體,合成出一系列矽化酸性阻劑,同樣通過熱安定性測試且經由微差掃描分析結果得到玻璃轉換溫度約在50℃上下。其中蝕刻速率結果,可證明添加含
    矽單體對於抗蝕刻能力的提升。最後使用此阻劑,成功的轉印出奈米級的圖案,且線寬之收縮率在掃描式電子顯微鏡觀察可達3%以下,顯示此系列阻劑應用在微奈米壓印上之潛力。

    Two different series of resists for hot embossing nanoimprinting were
    developed. One is the acidic resists which were prepared by the free r a d i c a l p o l y m e r i z a t i o n o f m e t h y l m e t h a c r y l a t e ( M M A ) ,normal-butylacrylate(n-BA), and methacrylic acid(MAA) in PGMEA.
    The other series of the resists containing silane moiety, acylic monomer (3-methacryloyloxypropyl)tris (trimethylsiloxy) silane, to promote the oxygen plasma resistance.
    In the part of the acidic resists, the glass transition temperatures and the thermal stabilities were examined by DSC and TGA, and the
    results demonstrated that the novel resists would be suitable for the
    application of hot-embossing nanoimprint lithography. Moreover, the addition of MAA made it possible for the resists to dissolve in base
    solution, TMAH, and it would be helpful to reduce the time in the resist stripping step. Finally, the resist were applied in the imprinting to fabricate PLED( polymer light emitting diode) device on a flexible substrate.
    The second series of resists also passed the thermal stability tests, and their Tgs were around 50℃. The results of the etching rate tests proved the improvement of etching resistance by adding the silane monomer. At last, the resist was used in the nanoimprint lithography, and it can completely transfer the nano-scale patterns of the silicon mold to the substrate. From the observation of SEM, the shrinkage of the pattern was less than 3%, so they demonstrated that this series ofresists has potential to be used in nanoimprint lithography.

    中文摘要..................................................................... I 英文摘要.................................................................... II 誌謝......................................................................... V 目錄........................................................................ VI 表目錄...................................................................... IX 圖目錄....................................................................... X 第一章序論................................................................... 1 1-1 前言..................................................................... 1 1-2 研究動機與目的........................................................... 5 第二章文獻回顧以及原理介紹................................................... 7 2-1 壓印技術................................................................. 7 2-1-1 熱壓型奈米壓印技術..................................................... 7 2-1-2 紫外光硬化奈米壓印微影技術............................................ 13 2-1-3 軟微影技術............................................................ 16 2-1-4 混合型壓印技術........................................................ 18 2-1-5 雷射輔助直接轉印技術.................................................. 22 2-2 蝕刻障礙層材料.......................................................... 25 2-2-1 熱塑型高分子阻劑...................................................... 25 2-2-2 感光型高分子.......................................................... 26 2-2-3 熱固型高分子.......................................................... 29 2-3 阻抗層高分子材料之設計原理.............................................. 31 2-3-1 含酸壓克力系列阻抗層高分子材料合成.................................... 31 2-3-2 矽化酸性壓克力系列阻抗層高分子材料合成................................ 33 第三章實驗過程與方法........................................................ 34 3-1 實驗用藥品與儀器........................................................ 34 3-1-1 藥品.................................................................. 34 3-1-2 實驗儀器.............................................................. 35 3-2 高分子阻劑合成.......................................................... 37 3-2-1 酸性阻劑之合成........................................................ 37 3-2-2 矽化酸性阻劑之合成.................................................... 38 3-2-3 高分子阻劑純化........................................................ 39 3-3 結構鑑定與分析.......................................................... 42 3-3-1 黏度測定.............................................................. 42 3-3-2 核磁共振光譜(1H-NMR,13C-NMR)分析...................................... 42 3-3-3 元素分析儀............................................................ 43 3-3-4 凝膠滲透層析儀分析.................................................... 43 3-3-5 熱重損失分析.......................................................... 44 3-3-6 微差掃描熱分析........................................................ 45 3-3-7 溶解速率測試.......................................................... 46 3-3-8 蝕刻速率測試.......................................................... 46 3-3-9 旋轉塗布膜厚測試...................................................... 47 3-4 微奈米壓印微影製程及有機發光元件製作.................................... 48 3-4-1 模具的清洗及前處理.................................................... 48 3-4-2 旋轉塗布.............................................................. 49 3-4-3 軟烤.................................................................. 51 3-4-4 壓印.................................................................. 52 3-4-5 蝕刻去除殘餘層........................................................ 56 3-4-6 圖案的觀察............................................................ 59 3-4-7 蝕刻氧化銦錫層........................................................ 60 3-4-8 剝除阻劑.............................................................. 61 3-4-9 PLED元件製造.......................................................... 61 第四章實驗結果與討論........................................................ 65 4-1 阻劑之合成.............................................................. 65 4-1-1 含酸阻劑之合成........................................................ 65 4-1-2 矽化含酸阻劑之合成.................................................... 67 4-2阻劑之結構與性質鑑定..................................................... 68 4-2-1 黏度測定.............................................................. 68 4-2-2 核磁共振光譜分析...................................................... 69 4-2-3 元素分析結果.......................................................... 70 4-2-4 分子量測定............................................................ 71 4-2-5 熱重損失分析.......................................................... 72 4-2-6 微差掃描熱分析........................................................ 75 4-2-7 溶解速率測試.......................................................... 76 4-2-8 蝕刻速率測試.......................................................... 77 4-2-9 旋轉塗布膜厚測試...................................................... 78 4-3 阻劑在微奈壓印上之應用.................................................. 79 4-3-1 酸性壓克力阻劑應用在PLED發光元件之製作................................ 79 4-3-2 矽化酸性壓克力阻劑在奈米壓印之應用.................................... 80 第五章結論................................................................. 116 參考文獻................................................................... 118

    1 . J o n c k h e e r e , R . , O p t i c a l p r o x i m i t y c o r r e c t i o n : M a s k
    pattern-generation challenges, Microelectronic Engineering 1996, 30,115
    2. Harriott, L.R., Next generation lithography, Materials Science in
    Semiconductor Processing 1998, 1, 93
    3. Chou, S.Y., Imprint of sub-25 nm vias and trenches in polymers,
    Applied Physics Letters 1995, 67, 3114
    4. Chou, S.Y., Krauss, P.R., Imprint Lithography with Sub-10 nm
    Feature Size and High Throughput, Microelectronic Engineering 1997,
    35, 237
    5. Zankovych, S., Hoffmann, T., Seekamp, J., Nanoimprint lithography:
    Challenges and prospects, Nanotechnology 2001, 12, 91
    6. Sotomayor Torresa, C.M., Zankovych, S., Seekamp, J., Nanoimprint
    lithography: An alternative nanofabrication approach, Materials
    Science and Engineering C 2003, 23, 23
    7. http://public.itrs.net/
    8. http://www.technologyreview.com/articles/emerging0203.asp
    9. Chou, S.Y., Nanoimprint lithography, Journal of Vacuum Science &
    Technology B 1996, 14, 4129
    10. Tan, H., Gilbertson, A., Chou, S.Y., Roller nanoimprint lithography,
    Journal of Vacuum Science & Technology B 1998, 16, 3926
    11. Chou, S.Y., Yu, Z., Schablitsky, S.J., Nanoscale GaAs metal–
    semiconductor–metal photodetectors fabricated using nanoimprint
    lithography, Applied Physics Letters 1999, 74, 2381
    12. Wang, J., Schablitsky, S., Yu, Z., Chou, S.Y., Fabrication of a new
    broadband waveguide polarizer with a double-layer 190 nm period
    metal-gratings using nanoimprint lithography, Journal of Vacuum
    Science and Technology B 1999, 17, 2957
    13. http://www.microresist.de/product.htm
    14. Pfeiffer, K., Bleidiessel, G., Gruetzner, G., Schulz, H., Hoffmann, T.,
    Scheer, H.C., Suitability of new polymer materials with adjustable
    glass emperature for nano-imprinting, Microelectronic Engineering
    1999, 46, 431
    15. Heidari, B., Maximov, I., Montelius, L., Nanoimprint lithography at
    the 6 in. wafer scale, Journal of Vacuum Science and Technology B
    2000, 18, 3557
    16. Haatainen, T., Ahopelto, J., Gruetzner, G., Finck, M., Pfeiffer, K.,
    Step and stamp imprint lithography using a commercial flip chip
    bonder, Proceedings of SPIE 2000, 3997, 874
    17. Heyderman, L. J., Schift, H., David, C., Gobrecht, J., Schweizer, T.,
    Flow Behaviour of Thin Polymer Films Used for Hot Embossing
    Lithography, Microelectronic Engineering 2000, 54, 229
    18. Beck, M., Graczyk, M., Maximov, I., Sarwe, E.L., Improving
    stamps for 10 nm level wafer scale nanoimprint lithography,
    Microelectronic Engineering 2002, 61-62, 441
    19. Hirai, Y., Fujiwara, M., Okuno, T., Tanaka, Y., Endo, M., Irie, S.,
    Nakagawa, K., Sasago, M., Study of the resist deformation in nanoimprint lithography, Journal of Vacuum Science and Technology
    B 2001, 19, 2811
    20. Guo, L.J., Peter, R., Krauss, Chou, S.Y., Nanoscale silicon field
    effect transistors fabricated using imprint lithography, Applied
    Physics Letters 1997, 71, 1881
    21. Michael, D., Chou, S.Y., Fabrication of 70 nm channel length
    polymer organic thin-film transistors using nanoimprint lithography
    2002, Applied Physics Letters, 81, 4431
    22. Chen, Y., Macintyre, D.S., Boyd, E., Moran, D., Thayne, I., Thoms,
    S ., Study of electron forward scattering effects on the footwidth of T - g a t e s f a b r i c a t e d u s i n g a b i l a y e r o f P M M A a n d U V , Microelectronic Engineering Microelectronic Engineering 2000, 53, 349
    23. Wu, W., Gu, J., Ge, H., Chou, S.Y., Room-temperature Si
    single-electron memory fabricated by nanoimprint lithography,
    Applied Physics Letters 2003, 83, 2268
    24. Chou, S.Y., Fabrication of 70 nm channel length polymer organic
    thin-film transistors using nanoimprint lithography, Applied Physics
    Letters 2002, 81, 4431
    25. Zhang, W., Chou, S.Y., Fabrication of 60-nm transistors on 4-in.
    wafer using nanoimprint at all lithography levels, Applied Physics
    Letters 2003, 83, 1632
    26. Krauss, P.R., Chou, S.Y., ;Nano-compact disks with 400 Gbit/in2
    storage density fabricated using nanoimprint lithography and read
    with proximal probe, Applied Physics Letters 1997, 71, 3174
    27. Moritz, J., Landis, S., Toussaint, J.C., Bayle-Guillemaud, R.,
    Patterned media made from pre-etched wafers: A promising route
    toward ultrahigh-density magnetic recording, IEEE Transactions on
    Magnetics 2002, 38, 1731
    28. Li, M.T., Tan, H., Chen, L., Wang, J., Chou, S.Y., Large area direct
    nanoimprinting of SiO2-TiO2 gel gratings for optical applications ,
    Journal of Vacuum Science and Technology B 2003, 21, 660
    29. Gu, Y., Igor, L., Kuskovsky, J., Fung, R.. Robinson, I.P.,
    D e t e r m i n a t i o n o f s i z e a n d c o m p o s i t i o n o f o p t i c a l l y a c t i v e
    CdZnSe/ZnBeSe quantum dots, Applied Physics Letters 2003, 83, 3779
    30. Yu, Z., Wu, W., Chen, L., Chou, S.Y., Fabrication of large area 100
    nm pitch grating by spatial frequency doubling and nanoimprint
    lithography for subwavelength optical applications, Journal of
    Vacuum Science and Technology B 2001, 19, 2816
    31. Yu, Z., Gao, H., Wu, W., Ge, H., Chou, S.Y., Fabrication of large
    area subwavelength antireflection structures on Si using trilayer resist
    nanoimprint lithography and liftoff, Journal of Vacuum Science and
    Technology B 2003, 21, 2874
    32. Studer, V., Pépin, A., Chen, Y., Nanoembossing of thermoplastic
    polymers for microfluidic applications, Applied Physics Letters 2002,
    80, 3614
    33. Pépin, A.; Youinou, P.; Studer, V., Lebib, A., Chen, Y., Nanoimprint
    lithography for the fabrication of DNA electrophoresis chips,
    Microelectronic Engineering 2002, 61-62, 927
    34. Otto, M., Bender, M., Hadam, B., Spangenberg, B., Kurz, H.,
    Fabrication of nanostructures using a UV-based imprint technique,
    Microelectronic Engineering 2000, 53, 233
    35. Otto, M., Bender, M., Hadam, B., Spangenberg, B., Kurz, H.,
    Characterization and application of a UV-based imprint technique,
    Microelectronic Engineering 2001, 57-58, 361
    36. Colburn, M., Johnson, S., Stewart, M., Damle, S., Bailey, T., Choi,
    B.J., Wedlake, M., Michaelson, T., Sreenivasan, S.V., Step and Flash
    Imprint Lithography: A New Approach to High-Resolution Patterning,
    Proceedings of SPIE 1999, 3676, 379
    37. Liang, X., Zhang, W., Li, M., Xia, Q., Wu, W., Ge, H., Huang, X.,
    Chou, S.Y., Electrostatic force-assisted nanoimprint lithography
    (EFAN), Nano Letters 2005, 5, 527
    38. Resnick, D.J., Mancini, D., Dauksher, W.J., Improved step and flash
    imprint lithography templates for nanofabrication, Microelectronic
    Engineering 2003, 69, 412
    39. Chappell, J., Electronic News - Electronic Business 2004
    40. Xia, Y., Whitesides, G.M., ; Soft lithography, Chem. Int. 1998, 37,
    550
    41. Falconnet, D., Csucs, G., Surface engineering approaches to
    micropattern surfaces for cell-based assays Biomaterials 2006, 27, 3044
    42. Lin, S.C., ; Simultaneous immobilization of protein microarrays by
    a micro stamper with back-filling reservoir, Sensors and Actuators B:
    2004, 99, 174
    4 3 . C h e n g , X . , C h a n g , M . H . , G u o , L . J . , C o m b i n e d
    Nanoimprint-and-Photolithography Technique with a Hybrid Mold,
    Proceedings of SPIE - The International Society for Optical
    Engineering 2004, 5374, 337
    4 4 . C h e n g , X . , G u o , L . J . , A
    combined-nanoimprint-and-photolithography patterning technique ;
    Microelectronic Engineering 2004, 71, 277
    45. Cheng, X., Guo, L.J., One-step lithography for various size patterns
    with a hybrid mask-mold, Microelectronic Engineering 2004, 71, 288
    46. Liao,W.C., Hsu, L.C., High aspect ratio pattern transfer in imprint
    lithography using a hybrid mold, Journal of Vacuum Science and
    Technology B: Microelectronics and Nanometer Structures 2004, 22,
    2764
    47. Cheng, X.,Guo, L.J., A hybrid mask-mould lithography scheme and
    i t s a p p l i c a t i o n i n n a n o s c a l e o r g a n i c t h i n f i l m t r a n s i s t o r s ,
    Nanotechnology 2006, 17, 927
    48. Chou, S.Y., Keimel, C., Gu, J., Ultrafast and direct imprint of
    nanostructures in silicon, Nature 2002, 417, 835
    49. Schulz, H., Scheer, H.-C., Hoffmann, T., New polymer materials for
    nanoimprinting, Journal of Vacuum Science & Technology B 2000, 18,
    1861
    50. http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf
    51. http://www.microresist.de/thermoplastics_2005_en.htm
    52. Colburm M., Annette,G., Marie, A., Patterning nonflat substrates
    with a low pressure, room temperature, imprint lithography
    process,Journal of Vacuum Science and Technology B 2001, 19(6),
    2162
    53. http://www.microresist.de/mr_nil6000_en.htm
    54. http://www.toyogosei.net/research.html
    55. http://www.microresist.de/mri9000e_2005_en.htm
    56. Liao, W.C., Hsu, L.C., Acidic acrylic polymers for nanoimprint
    lithography on flexible substrates, Journal of Vacuum Science and
    Technology B 2005, 23, 2518
    57. 有機光譜學郭振源
    58. 高分子設計
    59. 林松香, 材料與社會
    60. 陳壽安;光訊第79期1999年8月
    61. 吳忠幟;電子資訊第4卷第2期1998年8月

    無法下載圖示 校內:2096-07-27公開
    校外:2096-07-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE