簡易檢索 / 詳目顯示

研究生: 許庭榕
Hsu, Ting-Jung
論文名稱: 以分子模版技術用於螢光式與電化學阻抗式分析感測肌酸酐
Proposing molecular imprinting to achieve the fluorescence and the electrochemical impedance sensing of creatinine
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 71
中文關鍵詞: 肌酸酐分子模版螢光電化學阻抗式分析
外文關鍵詞: creatinine, fluorescenc, molecular imprintin, AC impedance, hybrid organic-inorganic sol-gel
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌酸酐 (Creatinine) 是肌肉中肌酸代謝的產物,血液通過腎臟時腎絲球會將其過濾並利用尿液將其排出,為診斷人體腎功能重要的因子,所以人體血液與尿液中的肌酸酐含量為相當重要的一個指標,本論文以分子模版技術用於螢光式與電化學阻抗式分析感測肌酸酐。
    在螢光式感測部分,本實驗以4-bromo-1,8-naphthalic anhydride 作為原料進行二步驟之反應,合成螢光功能性單體 4-methylamino-N-allylnaphthalimide,並利用 H1-NMR 與 FT-IR 確認化學結構鑑定,並將螢光單體溶於 DMSO 以螢光光譜儀掃描 3D 圖譜,探討最佳激發與放射波長,進行保存性實驗得知自行合成之螢光單體可保存一百天都保持原有性質,具有穩定與強烈的螢光性質。
    以螢光功能性單體合成螢光分子模版高分子對肌酸酐進行感測,利用螢光分子模版高分子吸附肌酸酐後造成的螢光強度下降比例 (fluorescent intensity quenching ratio) 作為感測依據。螢光分子模版高分子對肌酸酐之模印因子高達 6.677 ± 1.989,而對於肌酸的選擇性則有 3.541 ± 1.164,且在吸附後最大放射波長位置無位移現象,代表螢光性質穩定。
    粒狀有機無機混成分子模版高分子製備實驗是以帶有有機官能基的前驅物 N-[3-(trimethoxysilyl)-propyl] aniline (TMOSPA) 與 tetraethoxysilane (TEOS) 進行溶膠-凝膠反應 (sol-gel reaction),利用 FT-IR 確認合成的結構。並改變比例對肌酸酐進行吸附實驗,當肌酸酐:TMOSPA:TEOS莫耳比 1 : 10 : 30 為最佳,對肌酸酐之吸附量為 3.04 ± 0.059 mg /g MIP,模印因子為 3.234 ± 0.525。
    有機無機混成分子模版高分子電極之交流阻抗感測肌酸酐實驗,隨著肌酸酐濃度的上升,系統整體的阻抗值呈線性下降的趨勢,改變不同的肌酸酐模印量,當模印肌酸酐量達 20 mg 時會有最大的斜率與截距,而無模印高分子修飾之電極斜率遠低於模印高分子電極。有機無機混成模版高分子電極於低濃度及高濃度感測表現亦相當優異。對肌酸的選擇性相當高,加入肌酸幾乎不會造成系統阻抗值的改變。以尿素與食鹽成份進行干擾性測試表現亦很優良,檢量線斜率與無干擾物測試時無太大差異。
    綜合前述,已知以螢光單體進行聚合製備之模版材料,可有效地對肌酸酐進行較具專一性之吸附,在模印與選擇效應均顯著滿足的條件下,後續以螢光式進行檢測肌酸酐之可行性亦已確立。而有機無機混成模版高分子電極其模印效果與選擇性表現亦不遜於螢光感測,且也可滿足干擾下測試條件,對於肌酸酐檢測晶片之建立則具重大的突破性發展。

    A functional monomer with fluorescent effect was synthesized for the imprinting and specific uptake of creatinine, an important clinical marker for kidney function. 4-Methylamino-N-allylnaphthalimide, the fluorescent monomer, was synthesized from the reaction of 4-bromo-1,8-naphthalic anhydride with allylamine to form 4-bromo-N-allylnaphthalimide, and further to react with methylamine. The as prepared monomer was confirmed by the utilization of NMR and FTIR. Excitation and emission of the fluorescent monomer was investigated by a three-dimensional plot of fluorescent intensity versus excited and emitted wavelength and a corresponding contour plot. 4-Methylamino-N-allylnaphthalimide, EGDMA crosslinker, and AIBN initiator were then mixed together in the presence of creatinine template to form the specific recognition cavity for creatinine after the removal of creatinine by proper solvent from the prepared polymer matrix. Top view and side view of the SEM photos were taken to inspect the surface morphology of the polymeric materials. Imprinting effect as well as selectivity was also evaluated. The grouped clusters from the emitted fluorescent intensities of the imprinted and non-imprinted polymers after rebinding of creatinine were observed. Successful recognition of creatinine molecule via the molecular imprinting and fluorescence quenching was thus performed.
    AC impedance was already confirmed to be feasible transducer for the sensing of creatinine by the hybrid organic-inorganic sol-gel MIP electrode. Via which, it could can achieve good sensitivity and selectivity against creatine. Additionally, Such creatinine sensing was also feasible in the present of other intereference such as urea and sodium chloride which occur in urine. The signal/noise ratio was between 4.2~13.6 and the limit of detection can achieve 0.5 mg/dL. Such specification is sufficiently good enough to the sensing of creatinine in human urine.

    中文摘要……………………………………………………………………………… I 英文摘要…………………………………………………………………………… III 誌謝…………………………………………………………………………………… IV 目錄…………………………………………………………………………………… V 表目錄………………………………………………………………………………… IX 圖目錄………………………………………………………………………………… X 第ㄧ章………………………………………………………………………………… 1 1-1 分子模版高分子 (Molecularly imprinted polymer)……………………… 1 1-2 分子模印方式…………………………………………………………………… 2 1-2-1 共價性模印…………………………………………………………………… 2 1-2-2 非共價性模印………………………………………………………………… 2 1-3 分子模版高分子之組成………………………………………………………… 3 1-3-1 模版分子 (Template)………………………………………………………… 3 1-3-2 功能性單體 (Functional monomer)………………………………………… 3 1-3-3 交聯劑 (Crosslinker)……………………………………………………… 3 1-3-4 起始劑 (Initiator)………………………………………………………… 4 1-3-5 溶劑 (Solvent)……………………………………………………………… 4 1-4 製備分子模版高分子之方法…………………………………………………… 4 1-4-1 總體聚合法(Bulk polymerization)………………………………………… 4 1-4-2 多步驟澎潤聚合法 (Multi-step swelling polymerization)…………… 5 1-4-3 懸浮聚合法 (Suspension polymerization)……………………………… 5 1-4-4 沉澱聚合法 (Precipitation polymerization)…………………………… 5 1-4-5 表面模印聚合法 (Surface imprinting polymerization)……………… 6 1-5 分子模版高分子之應用………………………………………………………… 6 1-5-1 分離純化……………………………………………………………………… 6 1-5-2 結合分析……………………………………………………………………… 6 1-5-3 人工觸媒……………………………………………………………………… 6 1-5-4 生醫感測器應用……………………………………………………………… 7 1-2 肌酸酐 (Creatinine)…………………………………………………………… 9 1-3 螢光 (Fluorescence)………………………………………………………… 12 1-3-1 螢光原理……………………………………………………………………… 12 1-4 電化學阻抗光譜學 (Electrochemical impedance spectroscopy, EIS)… 15 1-4-1 圖示法………………………………………………………………………… 15 1-4-2 擴散限制效應………………………………………………………………… 16 1-5 研究動機………………………………………………………………………… 18 第二章 實驗方法、儀器與器材…………………………………………………… 19 2-1 螢光單體合成…………………………………………………………………… 19 2-1-1 4-Bromo-N-allylnaphthalimide 之合成………………………………… 19 2-1-2 4-Methylamino-N-allylnaphthalimide之合成………………………… 19 2-2 螢光分子模版高分子膜之製備………………………………………………… 20 2-2-1 預聚合溶液之配製…………………………………………………………… 20 2-2-2 高分子膜之製備……………………………………………………………… 22 2-3 螢光分子模版高分子膜清洗與再吸附………………………………………… 22 2-4 有機無機混成分子模版高分子之製備………………………………………… 22 2-4-1 預縮合溶液之配製與反應…………………………………………………… 22 2-4-2 有機無機混成分子模版高分子之清洗與吸附……………………………… 22 2-5 高效能液相層析儀 (HPLC) 分析……………………………………………… 23 2-6 有機無機混成分子模版高分子電極之製備…………………………………… 24 2-6-1 預縮合溶液之配製…………………………………………………………… 24 2-6-2 黃金電極之配製……………………………………………………………… 24 2-6-3 有機無機混成分子模版高分子修飾黃金電極……………………………… 24 2-7 循環伏安法電化學分析………………………………………………………… 25 2-8 交流阻抗分析感測……………………………………………………………… 25 2-8-1 Nyquist plot與 Bode plot 之繪製……………………………………… 25 2-8-2 有機無機混成分子模版高分子電極感測系統配置………………………… 26 2-8-3 有機無機混成分子模版高分子電極於仿尿液感測系統之配置…………… 26 2-9 實驗藥品……………………………………………………………………… 27 2-10 實驗儀器……………………………………………………………………… 29 第三章 結果與討論………………………………………………………………… 31 3-1 功能性螢光單體之合成與探討………………………………………………… 31 3-1-1 FT-IR 圖譜分析…………………………………………………………… 32 3-1-2 H1-NMR 圖譜………………………………………………………………… 34 3-2 螢光單體的性質探討…………………………………………………………… 36 3-2-1 螢光單體之螢光穩定性……………………………………………………… 38 3-2-2 螢光單體之螢光3D圖譜……………………………………………………… 39 3-3 螢光分子模版高分子膜性質…………………………………………………… 41 3-3-1 FT-IR 圖譜分析…………………………………………………………… 41 3-3-2 螢光分子模版高分子膜之螢光3D圖譜……………………………………… 42 3-3-3 螢光分子模版高分子膜之表面結構………………………………………… 44 3-4 螢光分子模版高分子膜於肌酸酐感測………………………………………… 44 3-4-1 螢光分子模版高分子膜激發波長測試……………………………………… 45 3-4-2 螢光分子模版高分子膜組成比例測試……………………………………… 46 3-4-3 螢光分子模版高分子膜感測數據分佈……………………………………… 47 3-4-4 螢光分子模版高分子膜選擇性測試………………………………………… 48 3-5 肌酸酐之電化學性質…………………………………………………………… 49 3-6 有機無機混成分子模版高分子吸附肌酸酐…………………………………… 51 3-6-1 有機無機混成模版高分子之 FT-IR 圖譜………………………………… 53 3-7 有機無機混成模版高分子電極之交流阻抗式感測肌酸酐…………………… 54 3-7-1 有機無機混成模版高分子電極之 Bode plot……………………………… 54 3-7-2 有機無機混成模版高分子電極之 Nyquist plot………………………… 56 3-7-3 分子模版高分子阻抗感測機制……………………………………………… 58 3-7-4 有機無機混成分子模版高分子電極感測肌酸酐…………………………… 59 3-7-5 有機無機混成分子模版高分子電極表面結構……………………………… 61 3-7-6 有機無機混成分子模版高分子電極低濃度感測…………………………… 62 3-7-7 有機無機混成分子模版高分子電極選擇性與干擾測試…………………… 64 第四章 結論………………………………………………………………………… 66 參考文獻……………………………………………………………………………… 68

    1. Wulff, G.; Sharhan, A.; Zabrocki, K., Enzyme analogue built polymers and their use for the resolution of racements. Tetrahedron Lett.1973, 14, 4329-4332.
    2. Wulf, G.; Vesper, R.; Grobe, E.; Sarhan, A. Enzyme-analogue built polymers, 4) on the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Makromol. Chem. 1977, 178, 2799-2816.
    3. Jun Haginaka, Monodispersed, Monodispersed, molecularly imprinted polymers as affinity-based chromatography media, Journal of Chromatography B, 2008, 866,3-13.
    4. David A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Advanced Drug Delivery Reviews, 2005, 57, 1779-1794.
    5. Giinter Wulff, Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies, Angewandte Chemie International Edition, 1995, 34, 1812-1832.
    6. Joris P Schillemans, Cornelus F van Nostrum, Molecularly imprinted polymer particles:synthetic receptors for future meducune, Nanomedicine, 2006, 1(4), 437-447.
    7. Hongyuan Yan, Kyung Ho Row, Characteristic and Synthetic Approach Molecularly Imprinted Polymer, International Journal of Molecular Sciences, 2006, 7, 155-178.
    8. Ansell, Richard J., Molecularly imprinted polymers in pseudoimmunoassay, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 151-165.
    9. Cormack P.A.G., Elorza A.Z., Molecularly imprinted polymers: synthesis and characterisation, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 173-182.
    10. Sergey A., Anthony P.F., Subrahmanyam S., Application of molecularly imprinted polymers in sensors for the environment and biotechnology, Sensor Review, 2001, 21, 292-296.
    11. García-Calzóna J.A., Díaz-García M.E., Characterization of binding sites in molecularly imprinted polymers, Sensors and Actuators B–Chemical, 2007, 123, 1180-1194.
    12. Karsten H., Klaus M., Molecularly imprinted polymers and their use in biomimetic sensors, Chemical Reviews, 2000, 100, 2495-2504.
    13. Ryh-Yaw Hsieh, Hsuan-Ang Tsai, Mei-Jywan Syu, Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums., Biomaterials, 2006, 27, 2083–2089.
    14. Toshifumi Takeuchi, Takashi Mukawa, Jun Matsui, Miho Higashi, Ken D. Shimizu, Molecularly Imprinted Polymers with Metalloporphyrin-Based Molecular Recognition Sites Coassembled with Methacrylic Acid., Analytical Chemistry, 2001, 73 (16), 3869-3874.
    15. Ken Hosoya, Kimihiro Yoshizako, Nobuo Tanaka, Kazuhiro Kimata, Takeo Araki, Jun Haginaka, Uniform-size Macroporous Polymer-based Stationary Phase for HPLC Prepares through Molecular Imprinting Technique., Chemistry Letters, 1994, 1437-1438.
    16. Ken Hosoya, Kimihiro Yoshizako, Yuichi Shirasu, Kazuhiro Kimata, Takeo Araki, Nobuo Tanaka, Jun Haginaka, Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography Structural contribution of cross-linked polymer network on specific molecular recognition., Journal of Chromatography A, 1996, 728, 139 147.
    17. Mayes, A.G.; Mosbach, K., Molecularly Imprinted Polymer Beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal.Chem. 1996, 6868, 3769–3774.
    18. Xianwen Kan, Qun Zhao, Zhong Zhang, Zhilin Wang, Jun-Jie Zhu, Molecularly imprinted polymers microsphere prepared by precipitation polymerization for hydroquinone recognition, Talanta, 2008, 75, 22–26.
    19. Gianluca Ciardelli, Cristiana Borrelli, Davide Silvestri, Caterina Cristallini, Niccoletta Barbani, Paolo Giusti, Supported imprinted nanospheres for the selective recognition of cholesterol., Biosensors and Bioelectronics, 2006, 21, 2329–2338.
    20. Yan Lu, Chang-Ling Yan, Shu-Yan Gao, Preparation and recognition of surface molecularly imprinted core–shell microbeads for protein in aqueous solutions., Applied Surface Science, 2009, 255, 6061–6066.
    21. Borje Sellergren, Barbel Ruckert, Hall, Andrew J. Hall, Layer-by-Layer Grafting of Molecularly Imprinted Polymers via Iniferter Modified Supports. Advanced Materials, 2002, 14, 1204-1208.
    22. Jun Matsui, Kensuke Akamatsu, Shingo Nishiguchi, Daisuke Miyoshi, Hidemi Nawafune, Katsuyuki Tamaki, Naoki Sugimoto., Composite of au nanoparticles and molecularly imprinted polymer as a sensing material. Anal. Chem. 2004, 76, 1310-1315.
    23. Tong A.J, Dong H, Li L.D., Molecular imprinting-based fluorescent chemosensor for histamine using zinc(II)–protoporphyrin as a functional monomer. Analytical Chemica Acta, 2002, 466, 31-37.
    24. Graham A.L., Carlson C.A., Edmiston P.L., Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT. Analytical Chemistry, 2002, 74, 458-467.
    25. Sing Muk Ng., R. Narayanaswamy, Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media. Analytical and Bioanalytical Chemistry, 2006, 386, 1235–1244.
    26. Seyda Korkut, Bulent Keskinler, Elif Erhan., An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta, 2008, 76 , 1147–1152.
    27. H.-Y. Lee, B. S. Kim., Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube. Biosensors and Bioelectronics, 2009, 25 , 587–591.
    28. Xiaoli Xua, Guoliang Zhou, Huixiang Li, Qian Liu, Song Zhanga, Jilie Kong., A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta, 2009, 78, 26–32.
    29. Rıdvan Say, Aytac Gultekin, Ayca Atılır Ozcan, Adil Denizli, Arzu Ersoz., Preparation of new molecularly imprinted quartz crystal microbalance hybride sensor system for 8-hydroxy-2′-deoxyguanosine determination. Analytica Chimica Acta, 2009, 640, 82–86.
    30. Zheng-peng Yang, Chun-jing Zhang., Designing of MIP-based QCM sensor for the determination of Cu(II) ions in solution, Sensors and Actuators B: Chemical, 2009, 142, 210–215
    31. Narayanan, S., and Appleton, H. D., Creatinine : A review. Clin. Chem, 1980, 26, 1119-1126.
    32. Kaplan, A., Jack, R., Opheim, K. E., Toivola, B., and Lyon, A. W., Clinical Chemistry-Interpretation and Techniques 4th, 1995, Williams & Wilkins.
    33. Spierto, F. W., Hannon, W. H., Gunter, E. W., and Smith, S. J., Stability of urine creatinine, Clinica Chimica Acta, 1997, 264, 227-232.
    34. Bazari H. Approach to the patient with renal disease. In: Goldman L, Ausiello D, eds. Cecil Medicine. 23rd ed. Philadelphia, Pa: Saunders Elsevier, 2007, chap 115.
    35. McClatchey, K. D., Clinical Laboratory Medicine , 2nd edition, Lippincott Wolliams & Wolkins.
    36. Narayanan, S., and Appleton, H. D., Creatinine : A review, Clin. Chem, 1980, 26, 1119-1126.
    37. A. Benkert, F. Scheller, W. Schssler, C. Hentschel, B. Micheel, O. Behrsing, G. Scharte, W. Stcklein, A. Warsinke, Development of a Creatinine ELISA and an Amperometric Antibody-Based Creatinine Sensor with a Detection Limit in the Nanomolar Range, Analytic Chemistry, 2000, 72, 916–921.
    38. Smith-Palmer T., Separation methods applicable to urinary creatine and creatinine, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2002, 781, 93-106.
    39. Elmosallamy M.A.F., New potentiometric sensors for creatinine, Analytic Chimica Acta, 2006, 564, 253-257.
    40. Skoog.Holler.Nieman., Principle of instrumental analysis, fifth edition, 355-376.
    41. 林敬二, 林宗義, 儀器分析(上), 第四版, 174-193
    42. Allen J. Brad, Larry R. Faulkner., Electrochemical methods fundamentals and application, second edition, 368-414.
    43. 鮮棋振, 電極動力學.
    44. Tetyana L. Delaney, Denys Zimin, Michael Rahm, Dieter Weiss, Otto S. Wolfbeis, Vladimir M. Mirsky., Capacitive Detection in Ultrathin Chemosensors Prepared by Molecularly Imprinted Grafting Photopolymerization, Anal. Chem, 2007, 79, 3220-3225.

    無法下載圖示 校內:2027-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE