| 研究生: |
陳佑任 Chen, You-Ren |
|---|---|
| 論文名稱: |
利用表面聲波聚焦進行連續式藻油偵測 Standing surface acoustic wave (SSAW) for continuous detection of lipid abundance in microalgae |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 表面駐波 、微流體 、小球藻 、聚二甲基矽氧烷 、鈮酸鋰 |
| 外文關鍵詞: | standing surface acoustic wave (SSAW), microfluidics, chlorella vulgaris, polydimethyl siloxane (PDMS), lithium niobate |
| 相關次數: | 點閱:138 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面聲波(surface acoustic wave)可對於微流體裝置中的粒子進行聚集或分離,其作法乃是在壓電材料上利用黃光微影製程技術(photolithography)製作出微流道裝置,並在微流道兩側加上指叉狀電極(inter-digital transducer),由於逆壓電效應(converse piezoelectric effect),指叉狀電極輸出的電能轉換成機械能,在表面產生表面聲波並使微流道內流體產生壓力差,造成流體中粒子的聚集或分離。影響表面聲波聚焦的因素,除了一般文獻中常提到的粒子大小、輸出功率之外,本研究針對其他變數如工作頻率、壓縮性(compressibility)作進一步的探討。
微藻是現今開發生質能源的重要原料之一,有生長速率快與高含油量的特性,因此發展快速檢測並篩選高含油量藻種的技術將有助於生質能源的開發。本研究亦嘗試利用表面駐波(standing surface acoustic wave, SSAW)的方式對於Nile red染色後的小球藻(chlorella vulgaris)聚焦,探討對於單顆微藻進行連續式、快速、無侵入性的油含量檢測的可行性。
Surface acoustic wave (SAW) is one of the techniques which can be applied to focus or separate microparticles in a microfluidic device. Through photolithography, the inter-digital transducer (IDT) is fabricated and integrated with microchannel. The alternating current electric field with appropriate frequency is applied and electric energy is transferred into mechanical energy owing to the converse piezoelectric effect. Pressure gradient is generated in the microchannel and the particles are focused or separated. The variables which will affect SAW such as particle size and output power are widely discussed and found in the literatures. In this study, the effect of the working frequency and compressibility of the medium is explored.
Microalgae are an important source for biomass energy. Due to their high growth rate and high lipid abundance, developing a strategy for high throughput detection of lipid inside microalgae is critical. In this study, we attempt to apply SSAW to focus the algal cells and study for feasibility of performing continuous detection of lipid content inside microalgae.
[1] L. Rayleigh, "On Waves Propagated along the Plane Surface of an Elastic Solid," Proceedings of the London Mathematical Society, vol. s1-17, pp. 4-11, November 1, 1885.
[2] H. Li, J. R. Friend, and L. Y. Yeo, "A scaffold cell seeding method driven by surface acoustic waves," Biomaterials, vol. 28, pp. 4098-4104, Oct 2007.
[3] J. Shi, D. Ahmed, X. Mao and T. J. Huang, "Surface acoustic wave (SAW) induced patterning of micro beads in microfluidic channels," Micro Electro Mechanical, vol. , pp. 26-29, Jan 2008.
[4] R. M. White and F. W. Voltmer “Direct piezoelectric coupling to surface elastic waves.”. 58(1970)1238-1276
[5] B. T. Matthias and J. P. Remeika, "Ferroelectricity in the Ilmenite Structure," Physical Review, vol. 76, pp. 1886-1887, 12/15/ 1949.
[6] K. Yosioka and Y. Kawasima, “Acoustic radiation pressure on a compressible sphere.” Acustica, vol. 5, pp. 167–173, 1955.
[7] J. J. Shi, H. Huang, Z. Stratton, Y. P. Huang, and T. J. Huang, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 9, pp. 3354-3359, 2009.
[8] J. J. Shi, S. Yazdi, S. C. S. Lin, X. Y. Ding, I. K. Chiang, K. Sharp, et al., "Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 11, pp. 2319-2324, 2011.
[9] T. Lilliehorn, U. Simu, M. Nilsson, M. Almqvist, T. Stepinski, T. Laurell, et al., "Trapping of microparticles in the near field of an ultrasonic transducer," Ultrasonics, vol. 43, pp. 293-303, 3// 2005.
[10] M. Groschl, "Ultrasonic separation of suspended particles - Part I: Fundamentals," Acustica, vol. 84, pp. 432-447, May-Jun 1998.
[11] D. Bazou, G. A. Foster, J. R. Ralphs, and W. T. Coakley, "Molecular adhesion development in a neural cell monolayer forming in an ultrasound trap," Molecular Membrane Biology, vol. 22, pp. 229-240, 2005.
[12] S. J. Kerbel, "Design of harmonic surface acoustic-wave (SAW) oscillators without external filtering and new data on temperature-coefficient of quartz," Ieee Transactions on Sonics and Ultrasonics, vol. SU22, pp. 220-220, 1975.
[13] T. Saiki, K. Okada, and Y. Utsumi, "Highly Efficient Liquid Flow Actuator Operated by Surface Acoustic Waves," Electronics and Communications in Japan, vol. 94, pp. 10-16, Oct 2011.
[14] F. Petersson, A. Nilsson, C. Holm, H. Jonsson, and T. Laurell, "Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels," Analyst, vol. 129, pp. 938-943, 2004.
[15] Y. N. Xia and G. M. Whitesides, "Soft lithography," Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
[16] Q. Zeng, H. W. L. Chan, X. Z. Zhao, and Y. Chen, "Enhanced particle focusing in microfluidic channels with standing surface acoustic waves," Microelectronic Engineering, vol. 87, pp. 1204-1206, May-Aug 2010.
[17] J. J. Shi, X. L. Mao, D. Ahmed, A. Colletti, and T. J. Huang, "Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 8, pp. 221-223, 2008.
[18] J. Nam, H. Lim, D. Kim, and S. Shin, "Separation of platelets from whole blood using standing surface acoustic waves in a microchannel," Lab on a Chip, vol. 11, pp. 3361-3364, 2011.
[19] W. K. Tseng, J. L. Lin, W. C. Sung, S. H. Chen, and G. B. Lee, "Active micro-mixers using surface acoustic waves on Y-cut 128 degrees LiNbO3," Journal of Micromechanics and Microengineering, vol. 16, pp. 539-548, Mar 2006.
[20] K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, "Development of novel atomization system based on SAW streaming," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 43, pp. 2987-2991, May 2004.
[21] J. J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, "Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 9, pp. 2890-2895, 2009.
[22] P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, "Commercial applications of microalgae," Journal of Bioscience and Bioengineering, vol. 101, pp. 87-96, Feb 2006.
[23] M. Piorreck, K.-H. Baasch, and P. Pohl, "Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes," Phytochemistry, vol. 23, pp. 207-216, // 1984.
[24] S. M. Renaud, D. L. Parry, L. V. Thinh, C. Kuo, A. Padovan, and N. Sammy, " Effect of light-intensity on the proximate biochemical and fatty-acid composition of isochrysis sp and nanochloropsis-oculata for use in tropical aquaculture," Journal of Applied Phycology, vol. 3, pp. 43-53, Mar 1991.
[25] S. M. Renaud, H. C. Zhou, D. L. Parry, L. V. Thinh, and K. C. Woo, "Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp, Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp (clone T ISO)," Journal of Applied Phycology, vol. 7, pp. 595-602, Dec 1995.
[26] M. Takagi, Karseno, and T. Yoshida, "Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells," Journal of Bioscience and Bioengineering, vol. 101, pp. 223-226, Mar 2006.
[27] K. I. Reitan, J. R. Rainuzzo, and Y. Olsen, "Effect of nutruent limitation on fatty-acid and lipid-content of marine microalgae," Journal of Phycology, vol. 30, pp. 972-979, Dec 1994.
[28] L. Gouveia and A. C. Oliveira, "Microalgae as a raw material for biofuels production," Journal of Industrial Microbiology & Biotechnology, vol. 36, pp. 269-274, Feb 2009.
[29] X. Meng, J. M. Yang, X. Xu, L. Zhang, Q. J. Nie, and M. Xian, "Biodiesel production from oleaginous microorganisms," Renewable Energy, vol. 34, pp. 1-5, Jan 2009.
[30] F. Alonzo and P. Mayzaud, "Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red," Marine Chemistry, vol. 67, pp. 289-301, Nov 1999.
[31] G. A. Fischer and J. J. Kabara, "Simple multibore columns for superior fractionation of lipids," Analytical Biochemistry, vol. 9, pp. 303-&, 1964.
[32] L. D. Metcalfe, A. A. Schmitz, and J. R. Pelka, "Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis," Analytical Chemistry, vol. 38, pp. 514-&, 1966.
[33] Vanwijng.D, "Modified rapid preparation of fatty acid esters from lipids for gas chromatogtaphic analysis," Analytical Chemistry, vol. 39, pp. 848-&, 1967.
[34] G. H. Huang, G. Chen, and F. Chen, "Rapid screening method for lipid production in alga based on Nile red fluorescence," Biomass & Bioenergy, vol. 33, pp. 1386-1392, Oct 2009.
[35] W. Chen, C. W. Zhang, L. R. Song, M. Sommerfeld, and Q. Hu, "A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae," Journal of Microbiological Methods, vol. 77, pp. 41-47, Apr 2009.
[36] D. Elsey, D. Jameson, B. Raleigh, and M. J. Cooney, "Fluorescent measurement of microalgal neutral lipids," Journal of Microbiological Methods, vol. 68, pp. 639-642, Mar 2007.
[37] T. H. Lee, J. S. Chang, and H. Y. Wang, "Rapid and in Vivo Quantification of Cellular Lipids in Chlorella vulgaris Using Near-Infrared Raman Spectrometry," Analytical Chemistry, vol. 85, pp. 2155-2160, Feb 2013.
[38] F. A. A. Fergusson, E. W. Guptill, and A. D. Macdonald, "Velocity of sound in glycerol," Journal of the Acoustical Society of America, vol. 26, pp. 67-69, 1954.
[39] L. Johansson, J. Enlund, S. Johansson, I. Katardjiev, M. Wiklund, and V. Yantchev, "Surface acoustic wave-induced precise particle manipulation in a trapezoidal glass microfluidic channel," Journal of Micromechanics and Microengineering, vol. 22, Feb 2012.
校內:2018-07-05公開