| 研究生: |
呂尚烜 Lu, Sang-Hsuan |
|---|---|
| 論文名稱: |
V2O5-HfO2複合材料備製與分析及其在紫外光與可見光光催化之應用 Synthesis and characterization of V2O5-HfO2 composite for photodegradation under UV and visible light irradiations |
| 指導教授: |
丁志明
TING, JHIH-MING |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 光催化 、五氧化二釩 、二氧化鉿 、奈米線 、奈米顆粒 |
| 外文關鍵詞: | Photodegradation, Nanowires, Nanoparticles, Vanadium oxide, Hafnium oxide |
| 相關次數: | 點閱:117 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鉿近年來受到微電子領域的注目,它有可能替代目前矽基集成電路核心器件金屬氧化物半導體場效應管(MOSFET)的柵極絕緣層二氧化矽(SiO2),以解決傳統 MOSFET 中 SiO2/Si 發展的尺寸極限問題。本實驗將二氧化鉿應用到全新的領域-光催化。我們發現二氧化鉿的缺陷能隙位置與五氧化二釩的導帶與價帶位置間有非常巧妙的關係,推測可以有效的分離五氧化二釩的電子電洞對。因此透過結合五氧化二釩與二氧化鉿,來嘗試提升光催化降解汙染物的能力。在實驗中,我們在不同的酸鹼度下結合五氧化二釩與二氧化鉿,來了解在不同酸鹼度下製作的二氧化鉿氧空缺是否在濃度或位置上有變化。同時也改變五氧化二釩的形狀來增加接觸面積,增加與污染物接觸的機會。本實驗大致上分為兩大類,第一類為以商用的五氧化二釩顆粒與不同比例且在不同酸鹼度下製作的二氧化鉿結合,第二類為改變商用的五氧化二釩顆粒樣貌成為奈米線,之後再與不同比例的二氧化鉿結合。之後兩大類的實驗均有針對光催化效率的進一步研究。
實驗中使用了X射線繞射儀、掃描式電子顯微鏡與穿透式電子顯微鏡去分析其結晶結構、表面形貌。使用表面吸附儀量測不同樣貌的五氧化二釩比表面積,表面化學鍵結分析確認五氧化二釩的不同價數存在是否影響光催化的結果。光學性質的分析,使用可見光/紫外光光譜儀量測純的五氧化二釩以及與二氧化鉿結合後的樣品之光吸收能力,使用微拉曼及微光激發光譜儀分析電子電動可以移動的能階位置與再結合速率。最後透過太陽光模擬器與紫外光來測定不同樣品對於分解亞甲基藍的效率。
A V2O5-HfO2-X composite photocatalyst consisting of one-dimensional high crystallinity V2O5 nanowires with surface HfO2 nanoparticles and zero-dimensional high crystallinity V2O5 nanowires with surface HfO2 nanoparticles are reported. The V2O5 nanowires and HfO2 nanoparticles were synthesized using a microwave hydrothermal method and sol-gel method, respectively. V2O5 has band gap of 2.3 eV, which absorbs visible light. The HfO2 nanoparticles were made to exhibit oxygen defect so that a sub-band structure occurs under the conduction band. We show that such a sub-band energy level help to retard the recombination of electron-hole pairs. The obtained results show that the degradation of methylene blue using V2O5-HfO2-X composite is much better than that using pure V2O5 nanowires under both UV and visible light irradiations. The effects of the composite composition and the oxygen defect in HfO2-x on the catalytic performance has been addressed.
reference
1. Biernat, K., A. Malinowski, and M. Gnat, The possibility of future biofuels production using waste carbon dioxide and solar energy. 2013.
2. Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238: p. 37-38.
3. Frank, S.N. and A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of the American Chemical Society, 1977. 99(1): p. 303-304.
4. Kudo, A., H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 2004. 33(12): p. 1534-1539.
5. Haber, J., M. Witko, and R. Tokarz, Vanadium pentoxide I. Structures and properties. Applied Catalysis A: General, 1997. 157(1): p. 3-22.
6. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758.
7. Matthews, R.W., An adsorption water purifier with in situ photocatalytic regeneration. Journal of Catalysis, 1988. 113(2): p. 549-555.
8. Serpone, N., et al., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 1995. 85(3): p. 247-255.
9. Patzke, G.R., F. Krumeich, and R. Nesper, Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angewandte Chemie International Edition, 2002. 41(14): p. 2446-2461.
10. Cheng, K.-C., F.-R. Chen, and J.-J. Kai, V 2 O 5 nanowires as a functional material for electrochromic device. Solar energy materials and solar cells, 2006. 90(7): p. 1156-1165.
11. Huang, M.W., et al., Rapid Synthesis of Vanadium Oxide Nanowires by Microwave Plasma-Enhanced Chemical Vapor Deposition.
12. Cao, A.M., et al., Self‐assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium‐Ion batteries. Angewandte Chemie International Edition, 2005. 44(28): p. 4391-4395.
13. Thongtem, T., A. Phuruangrat, and S. Thongtem, Preparation and characterization of nanocrystalline SrWO 4 using cyclic microwave radiation. Current Applied Physics, 2008. 8(2): p. 189-197.
14. Pan, D., et al., Hydrothermal preparation of long nanowires of vanadium oxide. Journal of materials research, 2002. 17(08): p. 1981-1984.
15. Rao, K., et al., Synthesis of inorganic solids using microwaves. Chemistry of Materials, 1999. 11(4): p. 882-895.
16. Livage, J., Hydrothermal synthesis of nanostructured vanadium oxides. Materials, 2010. 3(8): p. 4175-4195.
17. Robertson, J., High dielectric constant gate oxides for metal oxide Si transistors. Reports on Progress in Physics, 2005. 69(2): p. 327.
18. Wilk, G.D., R.M. Wallace, and J. Anthony, High-κ gate dielectrics: Current status and materials properties considerations. Journal of applied physics, 2001. 89(10): p. 5243-5275.
19. Rastorguev, A., et al., Luminescence of intrinsic and extrinsic defects in hafnium oxide films. Physical Review B, 2007. 76(23): p. 235315.
20. Lange, S., et al., Luminescence of ZrO2 and HfO2 thin films implanted with Eu and Er ions. physica status solidi (c), 2007. 4(3): p. 938-941.
21. Lange, S., et al., Luminescence of RE-ions in HfO 2 thin films and some possible applications. Optical Materials, 2006. 28(11): p. 1238-1242.
22. Robertson, J., High dielectric constant oxides. The European Physical Journal Applied Physics, 2004. 28(03): p. 265-291.
23. Wilk, G.D., R.M. Wallace, and J.M. Anthony, High-κ gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 2001. 89(10): p. 5243.
24. Foster, A., et al., Vacancy and interstitial defects in hafnia. Physical Review B, 2002. 65(17): p. 174117.
25. Choi, J., Y. Mao, and J. Chang, Development of hafnium based high-k materials—A review. Materials Science and Engineering: R: Reports, 2011. 72(6): p. 97-136.
26. Komarneni, S., R. Roy, and Q. Li, Microwave-hydrothermal synthesis of ceramic powders. Materials Research Bulletin, 1992. 27(12): p. 1393-1405.
27. Toraya, H., M. Yoshimura, and S. Somiya, Hydrothermal Reaction‐Sintering of Monoclinic HfO2. Journal of the American Ceramic Society, 1982. 65(9).
28. Eliziário, S., et al., Morphology and photoluminescence of HfO2 obtained by microwave-hydrothermal. Nanoscale research letters, 2009. 4(11): p. 1371-1379.
29. Jayaraman, V., et al., Synthesis and characterization of hafnium oxide nanoparticles for bio-safety. Materials Express, 2014. 4(5): p. 375-383.
30. Tirosh, E. and G. Markovich, Control of defects and magnetic properties in colloidal HfO2 nanorods. Advanced Materials, 2007. 19(18): p. 2608-2612.
31. Yan, B., et al., Single‐Crystalline V2O5 Ultralong Nanoribbon Waveguides. Advanced materials, 2009. 21(23): p. 2436-2440.
32. Chen, F., et al., Visible light photodegradation of organic compounds over V 2 O 5/MgF 2 catalyst. Applied Catalysis A: General, 2008. 348(1): p. 54-59.
33. Borgarello, E., et al., Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. Journal of the American chemical society, 1982. 104(11): p. 2996-3002.
34. Iwasaki, M., et al., Cobalt ion-doped TiO 2 photocatalyst response to visible light. Journal of Colloid and Interface Science, 2000. 224(1): p. 202-204.
35. Klosek, S. and D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. The Journal of Physical Chemistry B, 2001. 105(14): p. 2815-2819.
36. Zhu, J., et al., Fe 3+-TiO 2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. Journal of photochemistry and photobiology A: Chemistry, 2006. 180(1): p. 196-204.
37. Herrmann, J.-M., J. Disdier, and P. Pichat, Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chemical Physics Letters, 1984. 108(6): p. 618-622.
38. Yamashita, H., et al., Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method. Journal of synchrotron radiation, 2001. 8(2): p. 569-571.
39. Morikawa, T., Y. Irokawa, and T. Ohwaki, Enhanced photocatalytic activity of TiO 2− x N x loaded with copper ions under visible light irradiation. Applied Catalysis A: General, 2006. 314(1): p. 123-127.
40. Dvoranova, D., et al., Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental, 2002. 37(2): p. 91-105.
41. Wu, J.C.-S. and C.-H. Chen, A visible-light response vanadium-doped titania nanocatalyst by sol–gel method. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 163(3): p. 509-515.
42. Yamashita, H., et al., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1): p. 257-261.
43. Ohno, T., et al., Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. Journal of Photochemistry and Photobiology A: Chemistry, 1999. 127(1): p. 107-110.
44. Li, F. and X. Li, The enhancement of photodegradation efficiency using Pt–TiO 2 catalyst. Chemosphere, 2002. 48(10): p. 1103-1111.
45. Behar, D. and J. Rabani, Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, or Au0 coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study. The Journal of Physical Chemistry B, 2006. 110(17): p. 8750-8755.
46. Wang, W., et al., Preparation and photocatalytic properties of Fe 3+-doped Ag@ TiO 2 core–shell nanoparticles. Journal of colloid and interface science, 2008. 323(1): p. 182-186.
47. Gunawan, C., et al., Reversible antimicrobial photoswitching in nanosilver. Small, 2009. 5(3): p. 341-344.
48. Suresh, R., et al., Doping of Co into V 2 O 5 nanoparticles enhances photodegradation of methylene blue. Journal of Alloys and Compounds, 2014. 598: p. 151-160.
49. Sato, S., Photocatalytic activity of NO x-doped TiO 2 in the visible light region. Chemical Physics Letters, 1986. 123(1): p. 126-128.
50. Sato, S., R. Nakamura, and S. Abe, Visible-light sensitization of TiO 2 photocatalysts by wet-method N doping. Applied Catalysis A: General, 2005. 284(1): p. 131-137.
51. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 2001. 293(5528): p. 269-271.
52. Qiu, X., Y. Zhao, and C. Burda, Synthesis and Characterization of Nitrogen‐Doped Group IVB Visible‐Light‐Photoactive Metal Oxide Nanoparticles. Advanced Materials, 2007. 19(22): p. 3995-3999.
53. Jagadale, T.C., et al., N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol− gel method. The Journal of Physical Chemistry C, 2008. 112(37): p. 14595-14602.
54. Mitoraj, D. and H. Kisch, On the Mechanism of Urea‐Induced Titania Modification. Chemistry–A European Journal, 2010. 16(1): p. 261-269.
55. Burda, C., et al., Enhanced nitrogen doping in TiO2 nanoparticles. Nano letters, 2003. 3(8): p. 1049-1051.
56. Sathish, M., B. Viswanathan, and R. Viswanath, Characterization and photocatalytic activity of N-doped TiO 2 prepared by thermal decomposition of Ti–melamine complex. Applied Catalysis B: Environmental, 2007. 74(3): p. 307-312.
57. Sano, T., et al., Preparation of a visible light-responsive photocatalyst from a complex of Ti 4+ with a nitrogen-containing ligand. Journal of Materials Chemistry, 2004. 14(3): p. 380-384.
58. Belver, C., et al., Nitrogen-containing TiO 2 photocatalysts: part 1. Synthesis and solid characterization. Applied Catalysis B: Environmental, 2006. 65(3): p. 301-308.
59. Kontos, A., et al., Nitrogen modified nanostructured titania: electronic, structural and visible‐light photocatalytic properties. physica status solidi (RRL)-Rapid Research Letters, 2008. 2(2): p. 83-85.
60. Li, D. and H. Haneda, Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition. Journal of photochemistry and photobiology A: Chemistry, 2003. 155(1): p. 171-178.
61. Padmanabhan, S.C., et al., A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania. Chemistry of Materials, 2007. 19(18): p. 4474-4481.
62. Irie, H., Y. Watanabe, and K. Hashimoto, Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters, 2003. 32(8): p. 772-773.
63. Sakthivel, S. and H. Kisch, Daylight photocatalysis by carbon‐modified titanium dioxide. Angewandte Chemie International Edition, 2003. 42(40): p. 4908-4911.
64. Hamal, D.B. and K.J. Klabunde, Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO 2. Journal of Colloid and Interface Science, 2007. 311(2): p. 514-522.
65. Periyat, P., et al., One-pot synthesis of anionic (nitrogen) and cationic (sulfur) codoped high-temperature stable, visible light active, anatase photocatalysts. The Journal of Physical Chemistry C, 2009. 113(8): p. 3246-3253.
66. Periyat, P., et al., Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2. The Journal of Physical Chemistry C, 2008. 112(20): p. 7644-7652.
67. Han, C., et al., Innovative visible light-activated sulfur doped TiO 2 films for water treatment. Applied Catalysis B: Environmental, 2011. 107(1): p. 77-87.
68. Xie, Y., Y. Li, and X. Zhao, Low-temperature preparation and visible-light-induced catalytic activity of anatase F–N-codoped TiO 2. Journal of Molecular Catalysis A: Chemical, 2007. 277(1): p. 119-126.
69. Liu, S., J. Yu, and W. Wang, Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO 2. Physical Chemistry Chemical Physics, 2010. 12(38): p. 12308-12315.
70. Di Valentin, C., et al., Density functional theory and electron paramagnetic resonance study on the effect of N− F codoping of TiO2. Chemistry of Materials, 2008. 20(11): p. 3706-3714.
71. Marci, G., et al., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime. The Journal of Physical Chemistry B, 2001. 105(5): p. 1033-1040.
72. Ghows, N. and M.H. Entezari, Fast and easy synthesis of core–shell nanocrystal (CdS/TiO 2) at low temperature by micro-emulsion under ultrasound. Ultrasonics sonochemistry, 2011. 18(2): p. 629-634.
73. Brahimi, R., et al., Visible light induced hydrogen evolution over the heterosystem Bi 2 S 3/TiO 2. Catalysis today, 2007. 122(1): p. 62-65.
74. Leschkies, K.S., et al., Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Letters, 2007. 7(6): p. 1793-1798.
75. Kongkanand, A., et al., Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. Journal of the American Chemical Society, 2008. 130(12): p. 4007-4015.
76. Hagfeldt, A. and M. Graetzel, Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 1995. 95(1): p. 49-68.
77. Li, S., et al., BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. Journal of Applied Physics, 2009. 105(5): p. 54310.
78. Li, X., et al., Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode. Langmuir, 2011. 27(6): p. 3113-3120.
79. Shalom, M., et al., Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. The Journal of Physical Chemistry C, 2009. 113(9): p. 3895-3898.
80. Tvrdy, K. and P.V. Kamat, Substrate Driven Photochemistry of CdSe Quantum Dot Films: Charge Injection and Irreversible Transformations on Oxide Surfaces†. The Journal of Physical Chemistry A, 2009. 113(16): p. 3765-3772.
81. Jang, J.S., et al., Fabrication of CdS nanowires decorated with TiO 2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. international journal of hydrogen energy, 2008. 33(21): p. 5975-5980.
82. Spanhel, L., H. Weller, and A. Henglein, Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. Journal of the American Chemical Society, 1987. 109(22): p. 6632-6635.
83. Bessekhouad, Y., et al., UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO 2 semiconductors suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2006. 183(1): p. 218-224.
84. Rakkesh, R.A., D. Durgalakshmi, and S. Balakumar, Nanostructuring of a GNS-V 2 O 5–TiO 2 core–shell photocatalyst for water remediation applications under sun-light irradiation. RSC Advances, 2015. 5(24): p. 18633-18641.
85. Wang, Y., et al., Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B. Nanotechnology, 2011. 22(22): p. 225702.
86. Yang, G.C. and S.-W. Chan, Photocatalytic reduction of chromium (VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation. Journal of Nanoparticle Research, 2009. 11(1): p. 221-230.
87. Subramanian, V., E.E. Wolf, and P.V. Kamat, Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. The Journal of Physical Chemistry B, 2003. 107(30): p. 7479-7485.
88. Du, J., et al., Hierarchically ordered macro− mesoporous TiO2− graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS nano, 2010. 5(1): p. 590-596.
89. Xu, T., et al., Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Applied Catalysis B: Environmental, 2011. 101(3): p. 382-387.
90. Li, B. and H. Cao, ZnO@ graphene composite with enhanced performance for the removal of dye from water. journal of materials chemistry, 2011. 21(10): p. 3346-3349.
91. Petkov, V., et al., Structure of V2O5⊙ n H2O Xerogel Solved by the Atomic Pair Distribution Function Technique. Journal of the American Chemical Society, 2002. 124(34): p. 10157-10162.
92. Alonso, B. and J. Livage, Synthesis of vanadium oxide gels from peroxovanadic acid solutions: a 51 V NMR study. Journal of Solid State Chemistry, 1999. 148(1): p. 16-19.
93. Fontenot, C.J., et al., Vanadia gel synthesis via peroxovanadate precursors. 1. In situ laser raman and 51V NMR characterization of the gelation process. The Journal of Physical Chemistry B, 2000. 104(49): p. 11622-11631.
94. Sing, K.S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 1985. 57(4): p. 603-619.
95. Law, M., et al., Nanowire dye-sensitized solar cells. Nature materials, 2005. 4(6): p. 455-459.
96. Hemamala, U., et al., High-pressure x-ray diffraction and Raman spectroscopy of Hf V 2 O 7. Physical Review B, 2004. 70(21): p. 214114.
97. Zimmermann, R., et al., Strong hybridization in vanadium oxides: evidence from photoemission and absorption spectroscopy. Journal of Physics: Condensed Matter, 1998. 10(25): p. 5697.
98. Mendialdua, J., R. Casanova, and Y. Barbaux, XPS studies of V 2 O 5, V 6 O 13, VO 2 and V 2 O 3. Journal of Electron Spectroscopy and Related Phenomena, 1995. 71(3): p. 249-261.
99. Sawatzky, G. and D. Post, X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Physical Review B, 1979. 20(4): p. 1546.
100. Smith, K.E. and V.E. Henrich, Photoemission study of composition-and temperature-induced metal-insulator transitions in Cr-doped V 2 O 3. Physical Review B, 1994. 50(3): p. 1382.
101. Afanas’ev, V. and A. Stesmans, Stable trapping of electrons and holes in deposited insulating oxides: Al2O3, ZrO2, and HfO2. Journal of applied physics, 2004. 95(5): p. 2518-2526.
校內:2021-09-01公開