| 研究生: |
黃才俊 Huang, Tsai-Jiun |
|---|---|
| 論文名稱: |
玻璃基板加法製程銅導線傳輸線特性研究 Research on the Transmission Line Characteristics of Copper Conductor Fabricated by Additive Processes on Glass Substrate |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 加法製程 、銅沉積 、玻璃基板 、厚膜印刷 、傳輸損耗 |
| 外文關鍵詞: | Additive process, Copper deposition, Glass substrate, Galvanic displacement |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種新穎製作銅導線於玻璃基板上的技術,不同於常見減法製程,目標在結合厚膜鋁膏印刷技術與伽凡尼氧化還原化學置換反應,實現環保、製程更加簡單快速的的金屬線路於玻璃基板上。此技術利用厚膜鋁膏的低成本、高氧化電位和多孔性結構作為置換層膜,透過在玻璃基板上塗上鋁膏。賈凡尼效應下,將還原電位比鋁高的金屬(如銅、鎳)置換 出來,並將置換出的銅層作為銅晶種層進行電鍍。這一創新方式有效解決了傳統減法製程過程中的金屬廢液體,並結合電鍍技術製作高品質銅導線。
製作銅導線的過程分為三個階段。首先,利用厚膜網版印刷鋁膏的加法製程,在模具上印刷出想要的鋁線路,接著在第二階段,通過無電鍍化學置換法,將鋁導電膏置換成金屬銅膜,避免使用有害物質,達到更高的環保標準,最後,利用厚膜鋁導電膏的多孔性結構,通過電鍍方式,將修補內部多孔結構,使結構更加緊密,提高銅導線的品質和附著力,同時降低製造成本。
在實驗過程中,厚膜鋁漿的多孔性結構會導致鋁粉形成多孔陰極,使銅離子向內滲透,形成向下填孔電鍍的機制。本研究還在厚膜鋁漿中參雜硫酸銅粉末,提供額外 的銅離子,結果表明此方法可以促進向下電鍍,並改善電性。 透過OM、SEM 微結構和數據分析,本研究探討了不同置換條件和電鍍條件下,銅線路與基板附著力之間關係,以及電鍍層的結構和厚度變化,揭示多孔陰極 結構對電鍍過程的影響機制,提出改進方法,提高電鍍質量和薄膜附著力。研究結果將為 未來在印刷在玻璃基板上應用電化學銅導線製作提供重要的理論和實驗支持,並有助於優化工藝參數,拓展該技術在其他電子材料和元件製作中的應用潛力。
This study addresses the growing need for environmentally friendly, low-cost, and high-performance interconnect fabrication for next-generation 3D/2.5D packaging. The objective is to develop a process for highly conductive copper films on rigid glass substrates, which offer low dielectric constant, low loss, and high planarity but suffer from poor adhesion.
A novel additive approach is proposed, combining aluminum conductive paste screen printing, aluminum–copper galvanic displacement, and electroplating. The aluminum layer, with its high oxidation potential and porous structure, enables selective copper deposition without costly reducing agents or vacuum equipment. Electroplating further repairs voids, enhances density, and improves adhesion.
Tests on glass substrates confirmed a continuous copper layer with excellent adhesion; tape peel showed no delamination, and pull-off strength reached 17.865 kg/cm². The method produced stable, uniform copper films for high-frequency applications while maximizing material use and avoiding copper-containing wastewater.
The results confirm the feasibility of this low-temperature, scalable, and cost-effective process, making it a promising solution for future heterogeneous integration technologies.
1. Kao, Y.-H. (2018). 玻璃基板上高附著濕製程金屬化之研究 [A study on wet-processed metallization on glass substrate with high adhesion] (Master’s thesis, National Tsing Hua University).
2. Lai, Y.-W. (2022). A Novel Additive Technique to Fabricate 24GHz Array Patch Antenna Using LCP Film for Automotive Radar Applications (Master’s thesis, Department of Electrical Engineering, National Cheng Kung University, Taiwan).
3. Lin, H.-H. (2024, July). A novel electrochemical deposition of copper conductor on flexible printed circuit boards (Unpublished master’s thesis). Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.
4. Rehman, M. U., Ravichandran, S., Erdogan, S., & Swaminathan, M. (2020). W-band and D-band transmission lines on glass-based substrates for sub-THz modules. 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 660–665. IEEE.
5. V. Sukumaran, Q. Chen, F. Liu, N. Kumbhat, T. Bandyopadhyay, H. Chan, et al., “Through-package-via formation and metallization of glass interposers,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), 2010, pp. 557–563.
6. A. B. Shorey and R. Lu, “Progress and application of through glass via (TGV) technology,” in Pan Pacific Microelectronics Symposium (Pan Pacific), 2016, pp. 1–6.
7. SCHOTT AG. (n.d.). SCHOTT® low-loss glass: Technical details. Retrieved July 6, 2025, from https://www.schott.com/en-us/products/schott-low-loss-p1001140/technical-details
8. Valley Design. (n.d.). Ultra thin polishing – fused silica, glass, ceramics & sapphire. Retrieved July 6, 2025, from https://valleydesign.com/ultra-thin-polishing/
9. Bohr, M. T. (1995, December). Interconnect scaling – the real limiter to high-performance ULSI. In 1995 International Electron Devices Meeting Technical Digest (pp. 241–244). IEEE.
10. Rathore, H. S., & Nguyen, D. (1998, May). Effect of scaling of interconnection. In Copper metallization for sub-micron integrated circuits.
11. 鍾, 朝安 [Zhong, C.-A.]. (2013). 銀導體連線技術 [Silver conductor interconnection technology]. 國家奈米元件實驗室奈米通訊, 20, 26–33
12. H. A. Wheeler, "Formulas for the Skin Effect," Proc. IRE, vol. 30, 1942, pp. 412–424.
13. E. Liew, M. C. F. Malaysia, S. A. Malaysia, T.-a. Okubo, T. Sudo, T. Hosoi et al., “Signal transmission loss due to copper surface roughness in high-frequency region,” in IPC-Association Connecting Electronics Industries, 2014.
14. M. Schneider, “Dielectric loss in integrated microwave circuits,” Bell Labs Technical Journal, vol. 48, 1969, pp. 2325–2332.
15. J. D. Welch, "Losses in Microstrip Transmission System for Integrated Microwave Circuits," NEREM RECORD, 1966, pp. 100–101.
16. M. Yamaguchi, S. Kuramochi, and Y. Fukuoka, "High Frequency Transmission Property Evaluation of Fine Wiring Substrates," Transactions of The Japan Institute of Electronics Packaging, vol. 1, 2008, pp. 29–35.
17. Rodič, P., Zanna, S., Milošev, I., & Marcus, P. (2021). Degradation of sol-gel acrylic coatings based on Si and Zr investigated using electrochemical impedance, infrared and X-ray photoelectron spectroscopies. Frontiers in Materials, 8, Article 756447.
18. Wei, W.-Y.; Lee, C.; Chen, H.-J. Modeling and Analysis of the Cementation Process on a Rotating Disk. Langmuir 1994, 10(6), 1980–1986.
19. Sobel, S. G., & Cohen, S. (2010). Spectator ions are important! A kinetic study of the copper–aluminum displacement reaction. Journal of Chemical Education, 87(6), 616–618.
20. Kelly, J.J., C. Tian, and A.C. West, Leveling and microstructural effects of additivesfor copper electrodeposition. Journal of the Electrochemical Society, 1999. 146(7):p. 2540.
21. Takata, K. and A.-V. Pham. Electrical properties and practical applications ofliquid crystal polymer flex. in Polytronic 2007-6th International Conference onPolymers and Adhesives in Microelectronics and Photonics. 2007. IEEE.
22. R. Bantle, A. Matthews, Surface and Coatings Technology, Vol. 74-75 (1995), pp. 857-868.
23. A.J Perry,Thin Solid Films,Vol. 107(1983),pp167-170
24. 吳俊明,以RF磁控濺鍍法在塑膠基材上沉積銅模之性值研究,碩士論文,民國92年
25. Chen, Y.-F. (2010). Effects of sodium thiosulfate on adhesion of copper deposition layer on FR-4 laminate (Master’s thesis). Graduate Institute of Chemical Engineering and Materials Science, Minghsin University of Science and Technology, Taiwan.
26. Divya, P., Y. wen Lai, and W.H. Lee, A Novel Additive Technique to Fabricate 24GHz Array Patch Antenna Using LCP Film. IEEE Transactions on Components,Packaging and Manufacturing Technology, 2023.
27. Sun, Z. and J. Wang, Effects of additives on via filling and pattern plating with simultaneous electroplating. Circuit World, 2023. 49(2): p. 105-112.
28. Ling, H., et al. Influence of leveler concentration on copper electrodeposition forthrough silicon via filling. in 2009 International Conference on ElectronicPackaging Technology & High Density Packaging. 2009. IEEE.
29. Doblhofer, K., et al., An EQCM study of the electrochemical copper (II)/copper (I)/copper system in the presence of PEG and chloride ions. Journal of the Electrochemical Society, 2003. 150(10): p. C657.
30. CHENG, Zhi-Peng YANG, Yi LIU, Xiao-Di YANG, Yong-Lin LI, Feng-Sheng, (2007). 置换法製備核殼結構Cu/Al 復合粉末. 化學學報, 65(1), 81–85.
校內:2030-08-23公開