簡易檢索 / 詳目顯示

研究生: 洪偉欽
Hong, Wei-Chin
論文名稱: 富勒烯結構對有機太陽能電池光伏特性影響之研究
Influence of fullerene structures on the photovoltaic characteristics of organic solar cells
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 有機太陽能電池富勒烯聚(3-己烷噻吩)微結構
外文關鍵詞: Organic solar cell, Fullerene, Poly (3-hexylthiophene), Microstructure
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用P型高分子材料混摻不同結構之富勒烯作為有機太陽能電池主動層,探討富勒烯結構對有機太陽能電池光伏特性之影響。所使用之P型高分子材料分別為聚(3-己烷噻吩) (Poly (3-hexylthiophene), P3HT)以及Poly[N-9'-heptadecanyl-2 7-carbazole-alt-5 5-(4' 7'-di-2-thienyl-2' 1' 3'- benzothiadiazole)] ( PCDTBT),N型則為三種不同結構之富勒烯,分別為茚-碳六十之雙加成物(Indene-C60 bisadduct, ICBA)、茚-碳六十之單加成物(Indene-C60 monoadduct, ICMA)以及碳六十衍生物([6,6]-phenyl C61-butyric acid methyl ester, PCBM)。分別使用氯苯(Chlorobenzene, CB)與鄰-二氯苯(1,2-dichlorobenzene, DCB)為溶劑,配製P型高分子與N型富勒烯之混合溶液,以旋轉塗佈方式製作塊材異質接面結構之有機太陽能電池。本研究利用吸收光譜、拉曼光譜、原子力顯微鏡與X光繞射光譜等儀器分析薄膜,透過以上分析探討主動層薄膜內部微結構變化與元件電特性之間的關係。
    實驗結果顯示以P3HT為P型材料之太陽能電池中,P3HT:ICBA為主動層之元件具有最佳光電轉換效率,可達3.67%,主因其具有最大之開路電壓值(0.83 V),而P3HT:ICMA與P3HT:PCBM兩組元件效率差異不大(約2.5%)。然而,在以PCDTBT為P型材料之太陽能電池中,PCDTBT:ICBA之元件效率最差(僅1.76%),其開路電壓值最大(高達1.06 V),但在短路電流密度與填充因子兩項參數上表現不佳,而PCDTBT:ICMA與PCDTBT:PCBM兩組元件效率則相近(約2.8%)。
    利用光譜學方法分析不同結構富勒烯對主動層內微結構之影響。結果顯示在以P3HT:富勒烯主動層系統內,混摻ICBA易使P3HT在結晶區具有較佳之自組織能力;而富勒烯結構對P3HT於縱向堆疊之排列情形影響不大。然而,PCDTBT:富勒烯主動層系統內,混摻ICBA則易使主動層內P型與N型材料各自聚集,減少P-N接面之接觸面積,造成激子分離機率下降,影響元件效率。

    In this study, the structural effects of the active layers on the photovoltaic characteristics of polymer-fullerene bulk heterojunction (BHJ) solar cells were investigated. To prepare the active layers of the BHJ solar cells, two kinds of conjugated polymers: poly (3-hexylthiophene) (P3HT) and poly[N-9'-heptadecanyl-2 7-carbazole-alt-5 5-(4' 7'-di-2-thienyl-2' 1' 3'- benzothiadiazole)] (PCDTBT) were used as the electron donor, and three kinds of fullerene derivatives: indene-C60 bisadduct (ICBA), indene-C60 monoadduct (ICMA), and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were used as the electron acceptor. The polymer-fullerene blended active layers were prepared by solution deposition via a spin-coating technique using 1,2-dichlorobenzene and chlorobenzene as solvents, respectively. We studied the correlation between the microstructure of the active layers and the photovoltaic properties of the solar cells. The active layers were characterized using absorption spectroscopy, Raman spectroscopy, atomic force microscopy and x-ray diffraction.

    For the photovoltaic properties, we found that the P3HT-fullrene-based solar cells that were made using ICBA as the electron acceptor showed the best power conversion efficiency (PCE) of 3.67% and largest open-circuit voltage of 0.83 V. The devices with ICMA and PCBM as electron acceptor showed similar performance with the PCE of ca. 2.5%. For the PCDTBT-fullerene-based solar cells, however, the devices with ICBA exhibited the lowest photovoltaic performance with a PCE of 1.76% due to low short-circuit current density and inferior fill factor values. In contrast, the devices with ICMA and PCBM showed similar performance with the PCE of ca. 2.8%.

    We studied the effects of the structure of fullerene on the microstructure of active layers. For the P3HT-fullerene blending active layers, no significant changes were observed in the vertical orientation of the P3HT. Spectroscopy analysis results revealed the addition of ICBA improved the self-assembling ability of the crystalline P3HT. However, when ICBA was used in the PCDTBT-fullerene systems, the P-type and N-type materials tended to separately aggregate, thereby creating a smaller P-N junction area, thus decreasing the probability of exciton dissociation. This provides a reasonable basis for the lowest PCE of the PCDTBT-ICBA solar cells.

    中文摘要...I Abstract...III 致謝...V 目錄...VI 表目錄...VIII 圖目錄...IX 第一章 緒論...1 1-1 前言...1 1-2 有機太陽能電池發展簡介...4 1-3 有機太陽能電池工作原理...7 1-4 太陽能電池等效電路...9 1-4.1 理想等效電路模型...9 1-4.2非理想等效電路模型...10 1-5 有機太陽能電池參數介紹...11 1-5.1 開路電壓...11 1-5.2 短路電流密度...11 1-5.3 填充因子...12 1-5.4 轉換效率...12 1-6 太陽光頻譜...13 1-7 研究動機...14 第二章 實驗方法及步驟...22 2-1 實驗材料...22 2-2 元件製作流程...24 2-2.1 主動層溶液配製...24 2-2.2 元件製程...25 2-2.3 實驗分析儀器...28 第三章 以P3HT混摻不同結構富勒烯製作有機太陽能電池之研究...33 3-1 前言...33 3-2元件特性分析...35 3-2.1 元件光電特性...35 3-2.2 紫外-可見光吸收光譜分析...37 3-2.3 拉曼光譜分析...39 3-2.4 X光繞射光譜分析...41 3-2.5 原子力顯微鏡表面結構分析...42 第四章 以PCDTBT混摻不同結構富勒烯製作有機太陽能電池之研究...60 4-1 前言...60 4-2 元件特性分析...61 4-2.1 元件光電特性...61 4-2.2 紫外-可見光吸收光譜分析...62 4-2.3 拉曼光譜分析...63 4-2.4 原子力顯微鏡表面結構分析...64 4-2.5 X光繞射光譜分析...65 第五章 總結與未來展望...76 5-1 結果與討論...76 5-2 未來展望...79 參考文獻....80

    [1] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, “ Solar cell efficiency tables (version 34)”, Prog. Photovolt: Res. Appl. 17, p.320, 2009.

    [2] B. J. Peet, M. Senatore, A. J. Heeger and G. C. Bazan, “The role of processing in the fabrication and optimization of plastic solar cells”, Adv. Mater. 21, p.1521, 2009.

    [3] D. J. Vak, S. S. Kim, J. Jo, S. H. Oh, S. I. Na, J. W. Kim and D. Y. Kim, “Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation”, Appl. Phys. Lett. 91,
    p.081102 , 2007.

    [4] R. Green, A. Morfa, A. J. Ferguson, N. Kopidakis, G. Rumbles and S. E. Shsheen, “Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition Shaheen”, Appl. Phys. Lett. 92,
    p.033301, 2008.

    [5] S. S. Kim, S. I. Na, J. Jo, G. Tae and D. Y. Kim, “Efficient polymer solar cells fabricated by simple brush painting”, Adv. Mater. 19, p.4410, 2007.

    [6] P. Schilinsky, C. Waldauf and C. J. Brabec, “Performance analysis of printed bulk heterojunction solar cells”, Adv. Funct.Mater. 16, p.1669, 2006.

    [7] D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller, R. Gaudiana and C. Brabec, “High photovoltaic performance of a low-bandgap polymer”, Adv. Mater. 18, p.2931, 2006.

    [8] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers”, Appl. Phys. Lett. 92, p.033306, 2008.

    [9] www.nrel.gov/ncpv/images/efficiency_chart.jpg

    [10] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plastic solar cells”, Adv. Funct. Mater. 11, p.15, 2011.

    [11] C. W. Tang, “2-layer organic photovoltaic cell”, Appl. Phys. Lett. 48,
    p.183, 1986.

    [12] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science 270, p.1789, 1995.

    [13] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photo-induced electron-transfer from a conducting polymer to Buckminster-fullerene”, Science 258, p.1474, 1992.

    [14] J. C. Hummelen, et al. “Preparation and characterization of fulleroid and methanol fullerene derivatives”, J. Org. Chem. 60, p.532, 1995.

    [15] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Semiconducting polymers (as donors) and Buckminster fullerene (as acceptor) – photoinduced electron-transfer and heterojunction devices”, Synth. Met. 59, p.333, 1993.

    [16] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct.Mater.13, p.85, 2003.

    [17] G. Li, V. Shortriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials 4, p.864, 2005.

    [18] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. 6, p.497, 2007

    [19] B. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%”, Adv. Mater. 22, p.135, 2010.
    [20] Z. He, C. Zhong, X. Huang, W. Wong, H. Wu, L. Chen, S. Su and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells”, Adv. Mater. 23, p.4636, 2011.

    [21] M. Pope and C. E. Swenberg, “Electronic processes in organic crystals and polymers 2nd edn.” Oxford univ., 1999.

    [22] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic”, Nature 428, p.911, 2004.

    [23] Dipl. Ing. Klaus Petritsch, “Organic solar cell architectures”, PhD Thesis, 2000.

    [24] M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, “Design rules for donors in bulk heterojunction solar cells-towards 10% energy-conversion efficiency”, Adv. Mater. 18,
    p.789, 2006.

    [25] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells”, J. Appl. Phys. 94, p.6849, 2003.

    [26] N. Blouin, A. Michaud and M. Leclerc, “A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells”, Adv. Mater. 19, p.2298, 2007.

    [27] Y. He, H. Y. Chen, J. Hou and Y. Li, “Indene-C60 bisadduct: a new acceptor for high performance polymer solar cells”, Adv. Funct. Mater.19,
    p.3002, 2009.

    [28] C. Y. Chang, C. E. Wu, S. Y. Chen, C. Cui, S. S. Hsu, Y. L. Wang and Y. Li, “Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods”, Angew. Chem. Int. Ed. 50, p.9386, 2011.

    [29] L. Dou, J. You, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low bandgap polymer”, Nature Photonics 6, p.180, 2012.

    [30] M. A. Green , K. Emery , Y. Hisikawa and W. Warta , Prog. Photovolt.
    Res. Appl. 15, p.425, 2007.

    [31] M. A. Green , K. Emery , Y. Hisikawa ,W. Warta and E. D. Dunlop , Prog. Photovolt. Res. Appl. 19, p.565, 2011

    [32] M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells”, Adv. Mater. 20, p.2116, 2008.

    [33] H. Kang, C. H. Cho, H. H. Cho, T. E. Kang, H. J. Kim, K. H. Kim, S. C. Yoon and Bumjoon J. Kim, “Controlling Number of Indene SolubilizingGroups in MultiadductFullerenes for Tuning Optoelectronic Properties and Open-CircuitVoltage in Organic Solar Cells”, ACS Appl. Mater. Interfaces 4, p.110, 2012.

    [34] F. C. Wu, Y. C. Huang, H. L. Cheng, W. Y. Chou and F. C. Tang, “Importance of disordered polymer segments to microstructure-dependent photovoltaic properties of polymer:fullerene bulk heterojunction solar cells”, J. Phys. Chem. C 115, p.15057, 2011.

    [35] F. C. Spano, “Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly(3-hexyl)thiophene thin films”, J. Chem. Phys., p.122, 2005.

    [36] F. C. Spano, “Absorption in region-regular poly(3-hexyl)thiophene thin films: Fermi resonances interband couplind and disorder”, J. Chem.Phys. 325 ,p.22, 2006.

    [37] M. Baibarac, M Lapkowski, A. Pron, S. Lefrant and I. Baltog, “SERS spectra of of poly(3-hexyl)thiophene in oxidized and unoxidized states”, J. Raman. Spectrosc.29, p.825, 1998.

    [38] J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee and M. Moskovits, “Insight into the raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells”, Appl. Phys. Lett. 92, p.251912, 2008.

    [39] A. Sakamoto, Y. Furukawa and M. Tasumi, “Infrared and Raman studies of poly(phenyl enevinylene) and its model compounds”, J. Phys. Chem. 96, p.1490, 1992.

    [40] H. L. Cheng, J. W. Lin, F. C. Wu, W. R. She, W. Y. Chou, W. J. Shihb and H. S. Sheu, “Reformation of conjugated polymer chains toward maximum effective conjugation lengths by quasi-swelling and recrystallization approach”, Soft Matter 7, p.351, 2011.

    [41] M. Kakudo and N. Kasai, X-ray diffraction by macromolecules
    Kodansha Ltd. And Springer-Verlag Berlin Heidelberg, 2005.

    [42] S. Cho, J. H. Seo, S. H. Park, S. Beaupre, M. Leclerc and A. J. Heeger, “A thermally stable semiconducting polymer”, Adv. Mater. 22, p.1679 , 2010.

    [43] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”, Adv. Funtc. Mater.15, p.1193, 2005.

    下載圖示 校內:2018-09-03公開
    校外:2018-09-03公開
    QR CODE