| 研究生: |
劉勝峯 Liu, Sheng-Feng |
|---|---|
| 論文名稱: |
微銑削加工軸向切深對系統穩定性之影響 Effect of Axial Cutting Depth on Stability in Micro-End Milling |
| 指導教授: |
王俊志
Wang, J-J Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 微銑削 、刀具剛性 、製程阻尼 、軸向切深 、系統穩定性 、加工策略 |
| 外文關鍵詞: | Micro milling, Tool stiffness, Process damping, Milling stability, Axial cutting depth, Machining strategy |
| 相關次數: | 點閱:77 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討微銑削加工製程中結構剛性與製程阻尼對軸向切深之關係以及對銑削穩定性之影響。本文首先以銑削力模式為基礎,配合刀具撓曲模式針對不同軸向切深下之刀具剛性變化進行探討;再以動態銑削模式進行穩定性之探討,並延伸至奈氏軌跡圖與實驗結果搭配定義出不同加工條件下之製程阻尼,且由實驗結果可得知在微銑削加工製程中刀具剛性與製程阻尼之變化為影響系統加工穩定性之重要因素。根據相同模式,由實驗結果發現微銑削加工在軸向切深超過臨界切深發生系統不穩定現象後,其不穩定現象與軸向切深呈非線性關係,即在大於臨界切深之加工條件下,亦可選擇到適當加工參數達到穩定切削條件並可兼顧加工效率。經理論分析與實驗驗證後,本研究進一步探討微銑削穩定性對刀具壽命之影響,由實驗得知系統發生不穩定現象後,軸向切深越小時因刀具剛性及製程阻尼之影響導致刀具的不穩定振動情形越嚴重,進而加速刀具磨耗影響其刀具壽命。最後,利用本文模式進行穩定性預測並與穩定耳垂圖進行比較,進而可得考慮刀具剛性與製程阻尼變化之微銑削穩定耳垂圖。
This study examines the effect of tool stiffness and process damping on axial cutting depth and milling stability in micro-end milling. In this paper, the tool deflection model was used to examine the variation of tool stiffness under different axial cutting depth. The result of the experiment was combined with nyquist contour to define process damping under different axial cutting depth. The tool stiffness and process damping were found to be dominant in affecting the stability of micro-end milling. Previous experiment showed that micro-end milling would get unstable as axial cutting depth exceeds critical cutting depth. However, the instability of the system wasn’t in a linear relationship with axial cutting depth. In other words, when axial cutting depth exceeds critical cutting depth, the system can still achieve stability and good efficiency with proper choice of axial cutting depth. Furthermore, the study used the model to examine the effect of the milling stability on the tool life span. From the experiment, it was found that as the axial cutting depth gets smaller, the effect of tool stiffness and process damping on the tool instability gets more serious and thus affects the life span of tool. Last, this study utilized different tool stiffness and process damping on axial cutting depth and milling stability in micro-end milling stability lobes.
Afazov, S. M., Ratchev, S. M. and Segal, J., (2010), " Modelling and simulation of micro-milling cutting forces, " Journal of Materials Processing Technology, Vol. 210, pp. 2154-2164.
Afazov, S. M., Ratchev, S. M. ,Segal J and Popov A.A., (2011),”Chatter modeling in micro-milling by considering process nonlinearities” International Journal of Machine Tool & Manufacture,Vol 56,pp28-38
Bao, W. Y. and Tansel, I. N., (2000), " Modeling Micro-End-Milling Operations, Part I: Analytical Cutting Force Model, " International Journal of Machine Tool & Manufacture, Vol. 40, No. 15, pp. 2155~2174
Budak, E., Altintas, Y., and Armarego E. J. A. , (1998), “Prediction of Milling Force Coefficients From Orthogonal cutting Data, “ ASME Journal of Manufacturing Science and Engineering, Vol. 118, pp. 216-224.
Dan, I., Mathew, J., (1990),“Tool wear and monitoring techniques for turning-a review,” Int. J. Mach. Tools Manuf. Vol.30, pp.579-598.
Erhan Budak and Yusuf Altintas (1994), “Peripheral milling conditions for improved dimensional accuracy,” International Journal of Machine Tools & Manufacture, Vol. 34, pp. 907-918.
Geoffrey, B., 1975,Fundamentals of Metal Machining and Machine Tools, 2nd printing at Taipei, Taiwan.
Huang, C. Y.,Wang, J. J. Junz, (2007), “Mechanistic Modeling of ProcessDamping in Peripheral Milling,” Journal of Manufacturing Science and Engineering FEBRUARY, Vol. 129 pp.12-20.
Jemielniak, K., and Widota, A., (1989), “Numerical Simulation of Non-linearChatter Vibration in Turning,” Int. J. Mach. Tools Manuf., Vol. 29, pp. 239–247.
Kline, W. A., Devor, R. E., Snareef, I. A., (1982), " The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts, " International Journal of Machine Tool Design and Research, Vol. 22, No. 1, pp. 7-22.
Kline, W. A. DeVor, R. E., and Shareef, (1982), I. A., “The prediction of surface accuracy in end milling,” ASME Journal of Engineering for Industry, Vol. 104, pp. 272-278.
Koenigsberger, F., and Sabberwal, A. J. P., (1961), “An Investigation into the Cutting Force Pulsations During Milling Operations, “International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33.
Lee, S. W., Mayor, R. and Ni, J., (2006), " Dynamic Analysis of a Mesoscale Machine Tool, " ASME, J. Manufacturing Science and Engineering, Vol. 128, pp. 194-203.
Martellotti, M. E.,(1941), “An Analysis of the Milling Process, “Transaction of ASME, Vol. 63, pp.677-700.
Martellotti, M. E., (1945), “An Analysis of the Milling Process, Part 2: Down Milling, “Transaction of ASME, Vol. 67, pp. 233-251.
Melkote, S. N. and Endres, W. J., (1998), " The Importance of Including Size Effect When Modeling Slot Milling, " ASME Journal of Manufacturing Science and Engineering, Vol. 120, pp. 69-75.
Montgomery,D.,and Altintas, Y., (1991), “Mechanism of Cutting Force andSurface Generation in Dynamic Milling,” ASME J. Eng. Ind., 113, pp. 160–168.
Park, H.W. and Liang, S. Y., (2007), " Analysis of The Scale Effect for Microscale Machine Tools, " International Manufacture Science And Engineering Conference, Atlanta, Georgia, USA, pp. 1-8.
Rahnama R., Sajjadi M. and Simon S., (2009),” Chatter suppression in micro end milling with process damping,” Journal of Materials Processing Technology, Vol. 209,pp 5766-5776
Ryu, S. H., Lee, H. S. and Chu, C. N., (2003), " The form error prediction in side wall machining considering tool deflection, " International Journal of Machine Tools and Manufacture, Vol. 43, pp. 1405-1411.
Sabberwal, A. J. P., (1961), “Chip Section and Cuting Force During the Milling Operation, “Annals of the CIRP, Vol. 10, pp. 197-203.
Schulz, H. and Moriwaki, T., (1992), " High-Speed Machining, " Annals of the CIRP, vol. 41, p.637.
Tarng, Y. S., Young, H. T., and Lee, B. Y., (1992), “An Analytical Model of Chatter Vibration in Metal Cutting,” Int. J. Mach. Tools Manuf., Vol. 34, pp.183–197.
Tlusty, J., and Ismail, F., (1983), “Special Aspects of Chatter in Milling,” ASMEJ. Eng. Ind.,Vol. 105, pp. 24–32.
Tlusty, J., and MacNeil, P. , (1975), “Dynamics of Cutting Forces in End Milling, “CIRP annals, Vol. 24, pp. 21-25.
Tobias, S.A., and Fishwick, W.W., (1958), “Theory of Regenerative Machine Tool Chatter,”Engineering,205
Wang, J. J. and Liang S. Y. and Book W. J.
(1994), “Convolution Analysis of Milling Force Pulsation, “ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.
Wang, J. J., (1992), Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, April.
Wang, J. J., and Zheng C. M., (2002), “An analytical force model with shearing and ploughing mechanisms for end milling,” International Journal of Machine Tools & Manufacture, Vol.42, pp.761-771.
Wang, J.J., andZheng, C. M., (2002), “An Analytical Force Model with Shearingand Ploughing Mechanisms for End Milling,” Int. J. Mach. Tools Manuf.,Vol. 42, pp. 761–771.
Wang, W., Kweon, S. H. and Yang, S. H., (2005), " A study on roughness of the micro-end-milled surface produced by aminiatured machine tool, " Journal of Materials Processing Technology, Vol. 41, pp. 702-708.
Weck, Manfred, (1980),“Handbook of Machine Tools,’’ John Wiley & Sons Ltd, pp.60–61.
Won-Soo Yun, Jeong Hoon Ko (2002), “Development of virtual machining system, part 2: prediction and analysis of a machined surface error,” International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1607-1615.
Yellowley, I., (1985),“Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process,” International Journal of Machine Tool Design and Research, Vol. 25, No. 4, pp. 337-346.
彭仕良,撓件銑削加工尺寸誤差及自動補償之研究,國立成功大學機械工程學系,八十四年碩士論文
江榮華,微銑削刀具疲勞斷裂之探討,國立成功大學機械研究所,一百年碩士論文